NAME \qquad

MATH 211 Test 1, Fall 2019

Directions:

- Do not use any notes, books, the internet, or other sources of information.
- You may use a calculator for arithmetic calculations.
- You have 55 minutes. You must work alone; do not communicate with any other person.
- To receive full credit, you must show all relevant work to completely justify your answer (on separate paper).
- 106 points possible, graded out of 100 points.

Formulas

- $\int_{a}^{b} \frac{1}{2} r^{2} d \theta$
- $\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \quad \bullet\left|\int_{a}^{b} y d x\right|$
- $\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

1. (14 pts) When $t=30$, suppose $x=-75, y=42, \frac{d x}{d t}=-15$, and $\frac{d y}{d t}=10$,
(a) Find polar coordinates for the position $(-75,42)_{C}$.

Answer: $(2.63, \sqrt{7389})_{P}$
(b) Estimate the Cartesian position 2 seconds earlier, i.e. $x(28)$ and $y(28)$.

Answer: $\quad x(28) \approx-75-15(-2)=-45$ and $y(28) \approx 42+10(-2)=22$
2. (22 pts) Parameterize the following for $t \in[0,60]$ minutes.
(a) a line that starts at $(2,16)$ when $t=0$, and terminates at $(9,4)$ when $t=60$.

Answer: $\quad x(t)=2+\frac{7}{60} t$ and $y(t)=16-\frac{12}{60} t$
(b) a circle with area 36π, centered at $(9,4)$;
starts at the western-most point when $t=0$ moving clockwise with a period of 60 .
Answer: $\quad x(t)=-6 \cos \left(\frac{\pi}{30} t\right)+9$ and $y(t)=6 \sin \left(\frac{\pi}{30} t\right)+4$
3. (10 pts) Set up the integral to find the length of $y=\frac{1}{x^{2}}$ for $x \in[1,3]$.

Answer: parameterized $\left(t, 1 / t^{2}\right)$ you get $\frac{d y}{d t}=-2 / t^{3}$, so $L=\int_{1}^{3} \sqrt{1+4 t^{-6}} d t$
4. (30 pts) Consider the parametric equations:

$$
x(t)=7 t-2 t^{2} \quad y(t)=t^{2} \quad t \in[0,4]
$$

(a) Make a table of points and sketch the graph.

Answer: $(0,0,0),(1,5,1),(2,6,4),(3,3,9),(4,-4,16)$
(b) Find the equation of the tangent line at the point when $t=2$.

Answer: $\frac{d x}{d t}=7-4 t$ and $\frac{d y}{d t}=2 t$, so slope is $\frac{4}{-1}=-4$, and tan.line is $y=4-4(x-6)$
(c) Find the area enclosed between the parametric curve and the y-axis (set up only)

Answer: crosses when $t=7 / 2$, so $A=\left|\int_{0}^{3.5} t^{2}(7-4 t) d t\right|$
5. (30 pts) R is the region inside the loop made by the polar graph $r=6 \theta^{2}(1-\theta)$ for $\theta \in[0,1]$ radians.
(a) Find the perimeter of R (set up integral).

Answer: $\int_{0}^{1} \sqrt{\left(6 \theta^{2}(1-\theta)\right)^{2}+\left(12 \theta-18 \theta^{2}\right)^{2}} d \theta$
(b) Find the area of R (evaluate the integral by hand).

Answer: $18 \int_{0}^{1} \theta^{4}(1-\theta)^{2} d \theta=\int_{0}^{1} \theta^{4}-2 \theta^{5}+\theta^{6} d \theta=6 / 35$
(c) Using calculus, find the Cartesian coordinates of the point on the loop that is furthest from the origin.
Answer: $\frac{d r}{d \theta}=12 \theta-18 \theta^{2}=0$ where $\theta=2 / 3$ and $r=8 / 9$, so $(.70, .55)_{C}$

