NAME \qquad

MATH 211 Test 4, Fall 2019

Directions:

- This exam is open book/notes. But do not use the internet.
- You may use a calculator for arithmetic calculations.
- You have 55 minutes. You must work alone; do not communicate with any other person.
- To receive full credit, you must show all relevant work to completely justify your answer (on separate paper).
- 105 points possible, graded out of 100 points.

1. (30 pts) Let $f(x, y)$ be a function with $\nabla f=\left[\begin{array}{c}y^{2}-8 y+8 x \\ 2 x y-8 x\end{array}\right]$. Find the critical points and classify each one using the 2 nd derivative test.
Answer: set $2 x(y-4)=0$ to get $x=0$ or $y=4$, then get c.pts $(0,0),(0,8)$, and $(2,4)$.
$H=\left[\begin{array}{cc}8 & 2 y-8 \\ 2 y-8 & 2 x\end{array}\right]$
at $(0,0), D<0$, so saddle
at $(0,8), D<0$, so saddle
at $(2,4), D>0$ and $f_{x x}>0$, so CU, local min
2. (15 pts) Consider the surface of $z=f(x, y)$, and consider a path across that surface with:

$$
x=4 t-3, \quad y=\frac{15}{1+t^{2}}
$$

At the point where $t=2$, suppose $\frac{\partial z}{\partial y}=-2$ and $\frac{d z}{d t}=10$. Write the chain rule expression for $\frac{d z}{d t}$, and use it to to find $\frac{\partial z}{\partial x}$ at the given point.
Answer: by chain rule: $\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}$, so $10=\left(f_{x}\right)(4)+(-2)(-60 / 25)$, and $\frac{\partial z}{\partial x}=1.3$
3. (35 pts) A quadratic function $f(x, y)$ satisfies these conditions:

- $f(0,0)=50$
- $\nabla f(0,0)=\left[\begin{array}{l}2 \\ 5\end{array}\right]$
- $H=\left[\begin{array}{cc}6 & 7 \\ 7 & -4\end{array}\right]$
(a) Find the formula for $f(x, y)$.

Answer: $\quad f(x, y)=50+2 x+5 y+3 x^{2}-2 y^{2}+7 x y$
(b) Find the (x, y, z) coordinates of the critical point. Is it a local max, local min, or saddle?

Answer: solve $2+6 x+7 y=0,5-4 y+7 x=0$ to get $x=-43 / 73, y=16 / 73, z \approx 49.6$
(c) Find the concavity in the direction of $\vec{v}=\left[\begin{array}{l}9 \\ 2\end{array}\right]$.

Answer: $\quad \frac{\vec{v} \cdot(H \vec{v})}{\vec{v} \cdot \vec{v}}=\frac{1}{85}\left[\begin{array}{l}9 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}68 \\ 55\end{array}\right]=722 / 85$
(d) The concavity in the $\vec{w}=\left[\begin{array}{l}1 \\ a\end{array}\right]$ direction is zero. Find the value of $a>0$.

Answer: concavity works out to $6+14 a-4 a^{2}=0$, by the QF $a \approx 3.886$
4. (25 pts) Suppse z is an implicit function of x and y such that

$$
z^{2} x+10=y^{2}+z
$$

(a) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Answer: $2 z \frac{\partial z}{\partial x} x+z^{2}=\frac{\partial z}{\partial x}$, so $\frac{\partial z}{\partial x}=\frac{z^{2}}{1-2 x z}$
$2 z \frac{\partial z}{\partial y} x=2 y+\frac{\partial z}{\partial y}$, so $\frac{\partial z}{\partial y}=\frac{2 y}{2 x z-1}$
(b) Find the equation of the tangent plane at the point where $y=5$ and $z=3$

Answer: solve to get $x=2$; the gradient is $\nabla z=\left[\begin{array}{c}-9 / 11 \\ 10 / 11\end{array}\right]$,
so the tan.plane is $z=3-\frac{9}{11}(x-2)+\frac{10}{11}(y-5)$
(c) At that point, find $d z$ if $d x=.40$ and $d y=.15$.

Answer: $-9 / 11(.4)+10 / 11(.15)=-.191$

