NAME \qquad

MATH 211 Test 5, Fall 2019

Directions:

- This exam is open book/notes. But do not use the internet.
- You may use a calculator for arithmetic calculations.
- You have 55 minutes. You must work alone; do not communicate with any other person.
- To receive full credit, you must show all relevant work to completely justify your answer (on separate paper).
- 105 points possible, graded out of 100 points.

1. (21 pts) Let R be bounded by $x=0, y=x$, and $y=\frac{6}{x+1}$. Suppose that $\iint_{R} f(x, y) d A=75$.

Find the average value of f on R.
Answer: $\quad \iint_{R} 1 d A=\int_{0}^{2} 6(x+1)^{-1}-x d x=6 \ln (3)-2$, so the average value of f is $\frac{75}{6 \ln (3)-2} \approx 16.33$
2. (21 pts) Evaluate the integral by switching the order of integration.

$$
\int_{0}^{1} \int_{3 x}^{3} y^{4} \cos \left(x y^{2}\right) d y d x
$$

Answer: draw a picture, $\int_{0}^{3} \int_{0}^{y / 3} y^{4} \cos \left(x y^{2}\right) d x d y=\int_{0}^{3} y^{2} \sin \left(y^{3} / 3\right) d y=1-\cos (9) \approx 1.91$
3. (21 pts) Evaluate this improper integral:

$$
\int_{0}^{\infty} \int_{x^{2}}^{\infty} 12 x e^{-y} d y d x
$$

Answer: $\quad \int_{0}^{\infty} 12 x e^{-x^{2}} d x=6$
4. (21 pts) A room occupies the region R bounded by $|y-10|=3$ and $y=|x|$. The height of the ceiling is given by $f(x, y)=15-\cos (x y / 9)$, and the floor is the $x y$-plane.
(a) Set up (but do not evaluate) a double integral to find the volume of the room.

Answer: $\int_{7}^{13} \int_{-y}^{y} f(x, y) d x d y$
(b) Set up (but do not evaluate) a calculation to find the average distance from points in R (on the room's floor) to the origin.
Answer: the room's area is 120 , so $\frac{1}{120} \int_{7}^{13} \int_{-y}^{y} \sqrt{x^{2}+y^{2}} d x d y$
5. (21 pts) For $a>0$, define

$$
f(a)=\int_{0}^{a / 2} \int_{0}^{a}(x+y)^{2} d y d x
$$

(a) Work out a simple formula for $f(a)$, and then solve $f(a)=1000$.

Answer: $\frac{1}{3} \int_{0}^{a / 2}(x+a)^{3}-x^{3} d x=\frac{1}{12}(3 a / 2)^{4}-(a / 2)^{4}-a^{4}=\frac{a^{4}}{3}=1000$, so $a \approx 7.4$
(b) Find the value of a at which $f^{\prime}(a)=\frac{d f}{d a}=1000$.

Answer: solve $4 / 3 a^{3}=1000$ to get $a \approx 9.09$

