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• Imagine there is some theoretical truth represented by a “population” statistic (usually represented
by Greek letters like µ or σ). Often there is no concrete “population”, it’s a conceptual “long-run”
statistic.

• It is often impossible, impractical, or prohibitively expensive to know the precise truth, so we settle
for estimates: sample statistics (e.g. x or s) that are based on relatively small samples.

• We infer that, as the sample size n gets larger:

– mean: µ should be “around” x

– standard deviation: σ should be “close to” s

– proportion: p should be “approximately” p̂

– correlation: ρ (rho) should be “near” r

• For example, suppose I ask a random sample of n = 20 C-N students when they got up this morning,
and get x = 9.89. Another professor might poll a different sample of n = 20 students and get an
answer of x = 9.47. Every sample will yield different sample statistics because of luck of the draw, and
measurement noise.

• Maybe I combine the samples to get n = 40 and x = 9.68. Then I can infer that the average waking
time for all 2000 C-N students is µ ≈ 9.68. Maybe it’s really 9.83 or 9.56; we know there must be some
wiggle room, but it’s probably fairly close to 9.68.

• In this example, the population size is 2000, and the sample size is only 40. It’s much easier to
survey 40 students than all 2000. Practically speaking, we don’t need to know the exact µ for all 2000
students. A rough estimate is often good enough, but it’s good to know how far off we might be.

• The next topic is confidence intervals, where we’ll learn how much wiggle room to put around our
estimates.
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• We will skip over some mathematical details, but suffice it to say that under certain assumptions, there
is a bell curve distribution of the errors you make when estimating a statistic.

• Imagine going far enough out in the tails so that you are very likely to cover the truth with a
confidence interval around your point estimate.

• Consider our example of x = 9.68 average wake time for a sample of n = 40 students. We also need to
know the sample standard deviation; suppose we had the data in Excel and got s = 1.35. Let’s find a
95% confidence interval (CI) around 9.68. This is a window which is 95% sure of containing the true
mean µ for all 2000 students.

• In your TI calculator, hit STAT, go over to TESTS, and scroll down to tInterval.

10



You have the “Stats”, so enter them and set the “C-level” to .95.

• It should give you the CI: (9.25, 10.11). Sketch that interval on a number line, and notice that 9.68
would be the midpoint, and the endpoints are .43 in each direction.

• It is common to write the CI as 9.68± .43. Here the sample mean x = 9.68 is the point estimate,
and 0.43 is the margin of error (MOE).

• A good rule of thumb is that the 95% MOE for µ is about double the standard error:

≈ 2
1.35√

40
≈ .43

• We could say that there is a 95% chance that the average wake time for all 2000 C-N students was
between 9.25 and 10.11 (that is 9:15 and 10:07 AM).

• We are implicitly assuming that there was no bias either in our choice of n = 40 students or the
answers they gave. Statistics can be worse than useless if you have bad sample data, or if mathematical
assumptions aren’t valid.
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Sketch the confidence interval on a number line to visualize the margin of error.

1. 74± 3 is the same as (71, 77)

2. (12.4, 13.1) is the same as 12.75± 0.35
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1. In this example, you have the raw data, not the stats. So first enter the data in L1, then select DATA
when you do the tInterval. Also, set the confidence level to .90.

We could write the 90% CI as 5.55± .78.

2. Suppose you aren’t comfortable with such a wide CI. As a thought experiment, keep x and s the
same, but for a bigger sample of n = 14.

So now the 90% CI is 5.55± .55, and even the low-end estimate is at least 5 oz/ton.

It’s logical that bigger sample sizes shrink the confidence interval (lower the MOE).
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We can also place confidence intervals around a sample proportion.

• Suppose we flipped n = 500 Hershey kisses, and 156 of them landed on the base. The point estimate
is our sample proportion:

p̂ =
156

500
= 0.312

• Go to STAT-TESTS-(scroll down)-1propZint, and enter x = 156 and n = 500, and get a 95% CI.

We could write the CI (.271, .353) = .312± .041.

• The results of an experiment like this might be reported as 31.2% with a margin of error of 4.1
percentage points. This essentially means there is a 95% chance that the long-run proportion would
settle down within 4.1 percentage points of 31.2%.
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Every CI has a confidence level attached to it. 95% is very common, but you might see 90% or 99%, etc.
The complement to this number is called the significance level α.

confidence level significance level
.95 α = .05
.90 α = .10
.99 α = .01
.999 α = .001
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Let’s do n = 400 and α = .01. She made 284 shots (71% of 400).
Use 1propZint with x = 284 and a 99% confidence level.

Assuming her skill is constant, we estimate with 99% certainty that her long-run free throw percentage
would be between 65.16% and 76.84%. Or we could write that as 71± 5.84%.
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If you are interested in totals, multiply your estimates by the population size.

1. p̂ = 243
18000 = .0135, so 1.35% of those surveyed watch the show.

Use 1propZint, and multiply by 320 million.

2. Those surveyed filled an average of 12.2 prescriptions last year.
Since this is a mean, use tInterval with the given stats, and then multiply by 320 million.
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NOTE: imagine this is testing for COVID-19 instead of vampires.

1. 1propZint with x = 35 and n = 500 gives (.0476, .0924) = 7.0± 2.24% of the population is infected.

2. “victims per vampire” indicates we are talking about a mean.
The sample mean was 203 victims for 35 vampires, or x = 203

35 = 5.8 victims per vampire.
tInterval with n = 35, x = 5.8, and s = 2 gives (5.11, 6.49) = 5.80± .69.

We didn’t test everyone, but accounting for sample size and variation, we estimate that 7.0 ± 2.24% of
the population are vampires, and that the town’s vampires averaged 5.8± 0.69 victims last year.
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