Test 3 Checklist

- 1. sampling:
 - (a) population vs sample
 - (b) sample space Ω is the set of possible outcomes
 - (c) observational study vs designed experiment
 - (d) with / without replacement
 - (e) simple random sample, stratified sample, voluntary response sample
 - (f) sampling issues/dangers
- 2. inference generalizing from a sample to a population

	sample/empirical/estimated statistic	population/theoretical/true parameter
proportion	\hat{p}	p
mean	\overline{x}	μ
standard deviation	S	σ
correlation	r	ρ ("rho")

- 3. Basic inference by equating sample and population ratios or averages.
- 4. Confidence interval a window around the point estimate that is likely to contain the true population parameter
 - (a) confidence level 1α , e.g. if $\alpha = .05$ then 95% confident
 - (b) margin of error
 - (c) CI can be written as point estimate \pm MOE
 - (d) one sample proportion: $\hat{p} = \frac{x}{n}$ is the point estimate for p; use 1-propZint for CI
 - (e) one sample mean \overline{x} is the point estimate for μ ; use tInterval for CI
- 5. Hypothesis Test outline:
 - (a) null hypothesis H_0 The presumption that you want to discredit/reject.
 - (b) alternative hypothesis H_1 what the "prosecutor" thinks the evidence may point to
 - (c) sample statistics and effect sizes calculated from the observed data
 - (d) p-value plausibility of H_0 ; measures how consistent the sample evidence is with the null hypothesis (the probability that such an extreme observation would occur by chance if H_0 were true)
 - (e) conclusion The lower the p-value, the more "significant" the results are against H_0 in favor of H_1 .
 - If p-value $\leq \alpha$ then the data are inconsistent with H_0 ;
 - the difference is statistically significant, so reject H₀
 If *p*-value > α, then the data are reasonably consistent with H₀;
 - the difference is not statistically significant, so fail to reject H_0 .
- 6. significance level α (think "reasonable doubt" threshold), $\alpha = .05$ is common
- 7. left-tailed (<), right-tailed (>), two-tailed (\neq)

- 8. one-sample hypothesis test:
 - one sample mean $H_0: \mu = \mu_0$, use t-test
 - one sample proportion $H_0: p = p_0$, use 1-propZtest
- 9. You may do a hypotheis test of $H_0: rho = 0$ using linRegttest
- 10. two sample inference on the calculator
 - (a) two sample proportion HT $H_0: p_1 = p_2$, use 2-propZtest
 - (b) two sample proportion CI $p_1 p_2$, use 2-propZint
 - (c) two sample mean HT $H_0: \mu_1 = \mu_2$, use 2-sampTtest
 - (d) two sample mean CI $\mu_1 - \mu_2$, use 2-sampTint
 - (e) two sample standard deviation HT $H_0: \sigma_1 = \sigma_2$, use 2-sampFtest
- 11. Understand the hypothesis test framework, notation, and terminology.
 - (a) What does statistically "significant" really mean? Interpret the p-value and effect size together.
 - (b) Have intuition about how changes in the problem setup and/or data will affect the p-value or confidence interval.
 - (c) Type I error: reject a true H_0 (convict the innocent)
 - (d) Type II error: fail to reject a false H_0 (acquit the guilty)
- 12. Confidence interval (CI) and hypothesis testing (HT) decision guide:
 - (a) Decide what statistic you are studying, and which distribution applies:
 - proportions p (normal Z)
 - means μ (T distribution)
 - correlation *rho* (T distribution)
 - standard deviations σ (F distribution)
 - (b) Decide if you have 1 or 2 samples, or a scatter plot.
 - (c) If you are interested in the differences between matched pairs, subtract and treat the differences as one sample.
 - (d) Confidence interval (estimate, MOE) or hypothesis test (p-value significance) ?
 - (e) If you are doing a HT, is it left, right, or two-tailed? State H_0 and H_1 . Find the p-value. Reject H_0 (the effect is statistically significant) if the p-value $< \alpha$.
 - (f) If you are doing a CI, be able to identify the point estimate and margin of error.