MATH 208 Test 3, Spring 2020

Directions:

- This test is open book. You may use any resource linked to from the class webpage.
- Do not seek help from any other individual, whether in person or electronically.
- You may use Octave to verify calculations. These demos might be useful https://massey.limfinity.com/208/sage.htm
- Use notation conventions as described in class.
- To receive full credit, you must show all relevant work to completely justify your answer.
- You have 24 hours to email me a photo of your work. Organize your work clearly.
- 105 points possible, graded out of 100 points.
- 1. (24 pts) Write out the entries of 2×2 matrices that do the following linear transformations. Use decimals, rounded to the nearest .001.
 - (a) Write R to rotate clockwise 10 degrees.
 - (b) Write D to scale by a factor of 5 horizontally, and a factor of 2 vertically.
 - (c) Write P to project orthogonally onto the line $y = \frac{x}{6}$.
 - (d) Write S to shear horizontally by a factor of 3
 - (e) Write Y to reflect across the y-axis.
 - (f) Write F to flatten to 40% around the line $y = \frac{x}{6}$, i.e. F = .6P + .4I
- 2. (18 pts) Find the inverse of each of the matrices (if possible).
 - (a) R^{-1}
 - (b) D^{-1}
 - (c) P^{-1}
 - (d) S^{-1}
 - (e) Y^{-1}
 - (f) F^{-1}

3. (15 pts) Does the pair of transformations commute ? Yes or no?

(a) R and D	(d) R and Y	(g) D and S	(j) P and S	(m) S and Y
(b) R and P	(e) R and F	(h) D and Y	(k) P and Y	(n) S and F
(c) R and S	(f) D and P	(i) D and F	(l) P and F	(o) Y and F

- 4. (16 pts) Let A be a 3×2 matrix with entries given by $a_{ij} = i(i+j)$.
 - (a) Write the matrix A.
 - (b) Write the matrix $B = A^T A$.
 - (c) Find det(B).
 - (d) Find B^{-1} .

5. (16 pts) The matrix $P = \frac{1}{325} \begin{bmatrix} 289 & -102 \\ -102 & 36 \end{bmatrix}$ does an orthgonal projection onto a vector v.

- (a) Find the vector v.
- (b) Find the matrix R that orthogonally reflects across v.
- (c) Let $x = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$. i. Find ||x||. ii. Find ||Px||. iii. Find ||Rx||.
- (d) Find the angle between v and x.

6. (6 pts) Let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$. If $AMB = A^2$, then find the matrix M .
7. (10 pts) Let $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$.

- (a) Find matrices L (lower triangular) and U (upper triangular) so that A = LU.
- (b) Find matrices Q (with $Q^T Q = I$) and R (upper triangular) so that A = QR.