MATH 208 Final Exam, Spring 2020

Directions:

- This test is open book. You may use any resource linked to from the class webpage.
- You must work alone. Do not seek help from any other individual, whether in person or electronically.
- To receive full credit, you must show all relevant work to completely justify your answer.
- Please use Octave to check your answers, but all work should be done "by hand", needing only a handheld calculator.
- Use notation conventions as described in class.
- You have until Sat, Apr 25 at 8am Jeff City time to email me your work. Organize your work clearly.
- Each of the 12 questions is worth 9 points. So 108 points are possible; graded out of 100 points.
- 1. Let f(a, b) be a linear function giving the cost of a apples and b bananas. If f(3, 1) = 2.33 and f(1, 3) = 1.79, then evaluate f(2, 8).
- 2. Here is an augmented matrix:

Γ	1	2	3	4
	0	0	2	3
L	2	7	4	9

Perform the next two row operations of Gaussian elimination.

- 3. Find the 2×2 matrix P that orthogonally projects vectors onto the line y = 0.2x.
- 4. Let A be a 5 × 2 matrix with entries given by $a_{ij} = ij 1$. By hand, show how to compute $(A^T A)^{-1}$.
- 5. Let $A = \begin{bmatrix} 8 & 21 \\ 12 & 9 \end{bmatrix}$. The two columns sum to 20 and 30 respectively. There is a diagonal matrix D so that each column of AD sums to 100. Find D, and then compute DA.

6. Let
$$u = \begin{bmatrix} 2\\ 4\\ 9 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1\\ 5\\ v_3 \end{bmatrix}$, where $v_3 > 5$.

- (a) If $v_3 = 20$, find the angle (to the nearest degree) between u and v.
- (b) If the angle between u and v is 20°, find v_3 to the nearest integer. You may set up an equation to solve, or use trial and error.
- 7. Let $Q = \begin{bmatrix} .352 & -.936 \\ .936 & .352 \end{bmatrix}$ be a rotation matrix.
 - (a) Multiplying by Q rotates a vector by _____ degrees.
 - (b) Find a matrix S such that $S^2 = M$.

8. Suppose $\operatorname{rref}(A+5I) = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -0.8 \\ 0 & 0 & 0 \end{bmatrix}$. Find an eigenpair (λ, x) so that $Ax = \lambda x$, and x has integer entries.

9. Let
$$A = \begin{bmatrix} 15 & -3 \\ 2 & 8 \end{bmatrix}$$

By hand, diagonalize A (i.e. find a matrix V and diagonal matrix Λ such that $A = V\Lambda V^{-1}$)

- 10. Make up a 4×4 upper triangular matrix that has these properties:
 - $\bullet~$ determinant 210
 - $\bullet~{\rm trace}~17$
 - $\lambda = 2$ is an eigenvalue

•
$$A \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 8\\3\\10\\5 \end{bmatrix}$$

11. If $\lambda = 6$ is an eigenvalue of A, compute the value of:

$$\frac{x^T A x}{x^T A^{-1} x}$$

12. Let $A = \begin{bmatrix} a_{11} & 26 & 13 \\ -31 & 52 & 23 \\ 36 & -56 & a_{33} \end{bmatrix}$. You are given that $x = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}$ is an eigenvector of A. Find the associated eigenvalue, and then find a_{11} and a_{33} .