Euclidean Space

- ▶ 1D \mathbb{R} , 2D \mathbb{R}^2 , and 3D \mathbb{R}^3 space
- ▶ Cartesian coordinates (x, y, z)
- cylindrical coordinates (θ, r, z)
- associate each pt. with vector from origin
- ► vector v = PQ = "Q P" from P (initial point) to Q (terminal point)

C-N Math 211 - Massey, 29 / 69

Example

P(3,2,5) and Q(5,-1,12) can be thought of as points or vectors.

• Sketch \vec{P} , \vec{Q} , and $\vec{PQ} = [2, -3, 7] \in \mathbb{R}^3$

▶ write as row, column, or in standard basis: $\begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 2\vec{i} - 3\vec{j} + 7\vec{k}$

• distance from P to Q is the length of \vec{PQ} $\sqrt{2^2 + 3^2 + 7^2}$

C-N Math 211 - Massey, 30 / 69

Vectors

C-N Math 211 - Massey, 31 / 69

Linear Combinations

vector addition and scalar multiplication maintain nice properties (see book)

Distance

The distance between P and Q is the length/magnitude/norm of the vector \vec{PQ} . Generalize the Pythagorean Theorem.

▶ between P(2) and Q(5) in \mathbb{R}

- ▶ between P(2,1) and Q(5,5) in \mathbb{R}^2
- ▶ between P(2,1,8) and Q(5,5,2) in \mathbb{R}^3

$$\|ec{PQ}\| = ext{dist}(P,Q) = \sqrt{\sum |q_i - p_i|^2}$$

C-N Math 211 - Massey, 33 / 69

Euclidean Norm

Definition 1

If $\vec{v} \in \mathbb{R}^n$, the Euclidean norm $\|\vec{v}\| = \sqrt{\sum_{i=1}^n v_i^2}$ measures the vector's length or magnitude.

- triangle inequality || \$\vec{a} + \vec{b}\$|| \$\le || \$\vec{a}\$|| + || \$\vec{b}\$||
 scalars factor out || \$c\$\vec{v}\$|| = |c|||\$\vec{v}\$||
- ▶ zero vector $\vec{0} = [0, 0, 0], \|\vec{0}\| = 0$

C-N Math 211 - Massey, 34 / 69

Unit Vectors

▶ a unit vector has $\|\vec{u}\| = 1$ • $\frac{\vec{v}}{\|\vec{v}\|}$ is a unit vector if $\vec{v} \neq \vec{0}$ Any non-zero vector can be written as length times direction: $\vec{v} = \|\vec{v}\|_{\|\vec{v}\|}$ • e.g. if $\vec{v} = \begin{bmatrix} 2\\5\\4 \end{bmatrix}$, then $\vec{u} = \frac{1}{\sqrt{45}} \begin{bmatrix} 2\\5\\4 \end{bmatrix}$, and $-3\vec{u}$ has length 3 but in the opposite dir. \blacktriangleright in \mathbb{R}^2 , a unit vector can be written as $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$

C-N Math 211 - Massey, 35 / 69

Spheres

- 1. Set of all points 1 unit from origin: unit sphere - Cartesian and cylindrical.
- 2. Sphere w. center (x_0, y_0, z_0) and radius R.

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = R^2$$

 centered at (3,5,6) and tangent to *xy*-plane
 w. diameter P(1,5,3) → Q(5,-2,8)
 Find center and radius of: x² + y² + z² = 4z - 6x.

Dog Leash

Taking Clifford and Marmaduke for a walk.

- Clifford pulling 30° west of north.
- Marmaduke pulling northeast.

I am exerting a 50 pound force south so that there is no acceleration of the system. How much force is each dog exerting?

Right Triangle

Three points P(-2,5), Q(1,3), and R(5,9).

- 1. Note that $\vec{PQ} + \vec{QR} = \vec{PR}$.
- 2. Show that $\vec{PQ} \perp \vec{QR}$.
- 3. Show that $\triangle PQR$ is right using P.T.

4. Find its area.

C-N Math 211 - Massey, 38 / 69

Dot Product

Definition 2

Given vectors $\vec{a}, \vec{b} \in \mathbb{R}^n$, the dot product is

$$ec{a}\cdotec{b}=\sum_{i=1}^n\,a_ib_i$$

The dot product of two vectors is a scalar.

C-N Math 211 - Massey, 39 / 69

Illustration

If $\vec{a} = [1, 4, 6]$, $\vec{b} = [3, -5, 7]$, $\vec{c} = [3, 2, 1]$, find 1. $\vec{a} \cdot \vec{b} = 25$ 5. $\vec{a} \cdot (\vec{b} + \vec{c})$ 2. $\vec{a} \cdot \vec{c} = 17$ 6. $\vec{0} \cdot \vec{a}$ 3. $2(\vec{a} \cdot \vec{b})$ 7. $(\vec{a} \cdot \vec{b})\vec{c}$ 4. $(2\vec{a}) \cdot \vec{b}$ 8. $\vec{a} \cdot \vec{b} \cdot \vec{c}$

C-N Math 211 - Massey, 40 / 69

Dot Product Properties

C-N Math 211 - Massey, 41 / 69

Orthogonality

Definition 3

Two vectors are orthogonal (perpendicular, \perp) if they satisfy the Pythagorean Theorem:

$$\|ec{a}\|^2 + \|ec{b}\|^2 = \|ec{a} + ec{b}\|^2$$

Theorem 4 $\vec{a} \perp \vec{b}$ if and only if $\vec{a} \cdot \vec{b} = 0$

C-N Math 211 - Massey, 42 / 69

Orthogonal Decomposition

$$ec{b} = \|ec{b}\|\cos(heta)rac{ec{a}}{\|ec{a}\|} + \|ec{b}\|\sin(heta)rac{ec{w}}{\|ec{w}\|}$$

Dot product \vec{a} on both sides, noting $\vec{a} \cdot \vec{w} = 0$ $\blacktriangleright \vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos(\theta)$ $\blacktriangleright \theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} \right) \in [0, \pi]$

C-N Math 211 - Massey, 43 / 69

Law of Cosines

- Let θ be the angle between \vec{a} and \vec{b} .
- Draw a triangle; note $\vec{a} = \vec{b} + (\vec{a} \vec{b})$.
- Derive the Law of Cosines, a generalization of the Pythagorean Theorem.

$$\begin{aligned} |\vec{a} - \vec{b}||^2 &= (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) \\ &= \|\vec{a}\|^2 + \|\vec{b}\|^2 - 2\vec{a} \cdot \vec{b} \\ &= \|\vec{a}\|^2 + \|\vec{b}\|^2 - 2\|\vec{a}\|\|\vec{b}\|\cos(\theta) \end{aligned}$$

Finding Angles

- 1. Find all three angles of the triangle formed by P(0,0), Q(3,1), and R(5,4).
- 2. The Great Pyramid of Giza has a square base of side length 756 feet, and was 481 feet tall. Find the angle between two adjacent lateral edges. Then find the area of a triangluar face.

Correlation

$\vec{1}$ is the vector of ones.		
$ec{1}\cdotec{x}$	math	english
mean: $\overline{x} = \frac{1}{n}$	24	29
Let $\tilde{x} = \vec{x} = \vec{x} \cdot \vec{x}$	17	20
"centered" vector	31	27
	23	32
correlation: $\tilde{M} = \tilde{F}$	20	22
$\cos(heta) = rac{M+E}{\ ilde{M}\ \ ilde{E}\ } \in [-1,1]$		

C-N Math 211 - Massey, 46 / 69

Projections

$$ec{b} = \|ec{b}\|\cos(heta)rac{ec{a}}{\|ec{a}\|} + \|ec{b}\|\sin(heta)rac{ec{w}}{\|ec{w}\|}$$

- ► the scalar component of \vec{b} along \vec{a} is $\operatorname{comp}_{\vec{a}}\vec{b} = \|\vec{b}\|\cos(\theta) = \frac{\vec{a}\cdot\vec{b}}{\|\vec{a}\|}$
- ► the orthogonal projection of \vec{b} onto \vec{a} is proj_{*a*} $\vec{b} = \operatorname{comp}_{\vec{a}} \vec{b} \frac{\vec{a}}{\|\vec{a}\|} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$

C-N Math 211 - Massey, 47 / 69

Projections

$$\|\vec{PR} - \operatorname{proj}_{\vec{PQ}} \vec{PR}\| = \sqrt{\|\vec{PR}\|^2 - (\operatorname{comp}_{\vec{PQ}} \vec{PR})^2}$$

C-N Math 211 - Massey, 48 / 69

Work

force: \$\vec{F}\$ displacement: \$\vec{D}\$ work: \$W = \vec{F} \cdot \vec{D}\$ = \$\|\vec{F}\|\|\vec{D}\|\cos(\theta)\$

C-N Math 211 - Massey, 49 / 69

Cross Product

Definition 5

The cross product of two vectors $\vec{a}, \vec{b} \in \mathbb{R}^3$ is

$$egin{array}{rll} ec{a} imesec{b}\ =&igg| egin{array}{rll} ec{i}&ec{j}&ec{k}\ a_1&a_2&a_3\ b_1&b_2&b_3\ b_1&b_2&b_3\ \end{array} igg| ec{a}\ =&igg| egin{array}{rll} a_2&a_3\ b_2&b_3\ ec{j}&ec{l$$

C-N Math 211 - Massey, 50 / 69

Miracle

rotate fingers from a to b, then thumb gives direction of a × b
a × b is orthogonal to both a and b
||a × b|| = ||a||||b||sin(θ)

C-N Math 211 - Massey, 51 / 69

θ.

Example

Let
$$\vec{a} = \begin{bmatrix} 3\\7\\2 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1\\4\\3 \end{bmatrix}$.
1. Show $\vec{a} \times \vec{a} = \vec{0}$.
2. Show $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$.
3. Show $\vec{a} \perp (\vec{a} \times \vec{b})$.
4. Show $\vec{b} \perp (\vec{a} \times \vec{b})$.
5. Show $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\|$ sin

C-N Math 211 - Massey, 52 / 69

Multiplication Table

	\vec{i}	\vec{j}	$ec{k}$
\vec{i}	Õ	$ec{k}$	$-\vec{j}$
\vec{j}	$-ec{k}$	Õ	\vec{i}
$ec{k}$	\vec{j}	$-\vec{i}$	Õ

C-N Math 211 - Massey, 53 / 69

Properties

1. $\vec{a} \times \vec{a} = \vec{0}$ 2. $\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$; anti-commutative 3. $(c\vec{a}) \times \vec{b} = c(\vec{a} \times \vec{b})$ for constant c4. $\vec{a} \times (\vec{b} + \vec{z}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{z})$; distributive Give an example showing not associative.

C-N Math 211 - Massey, 54 / 69

Dot vs Cross

dot product	cross product
defined for \mathbb{R}^n	defined only for \mathbb{R}^3
$ec{x}\cdotec{y}$ is a scalar	$ec{x} imes ec{y}$ is a vector
$ec{x} \cdot ec{y} = \ ec{x}\ \ ec{y}\ \cos heta$	$\ ec{x} imesec{y}\ =\ ec{x}\ \ ec{y}\ \sin heta$
$ec{x} \cdot ec{y} = 0 ext{ implies } ec{x} \perp ec{y}$	$ec{x} imes ec{y} = ec{0} ext{ implies } ec{x} = cec{y}$
$ec{x}\cdotec{x}=\ ec{x}\ ^2$	$ec{x} imesec{x}=ec{0}$

C-N Math 211 - Massey, 55 / 69

Parallelogram

area of parallelogram defined by P, Q, R ||PQ|||PR||sin θ = ||PQ × PR||
△PQR has area ¹/₂ ||PQ × PR||
If pts all in ℝ², append 0 to extend to ℝ³.

Parallelpiped

Three vectors $\vec{u}, \vec{v}, \vec{w}$ determine a parallelpiped.

$$egin{aligned} ext{volume} &= (ext{area base})(ext{height}) \ &= \|ec{u} imesec{v}\|(\|ec{w}\||\cos heta|) \ &= \|ec{u} imesec{v}\|\|ec{w}\|\|ec{w}\cdot(ec{u} imesec{v})| \ &= \|ec{w}\cdot(ec{u} imesec{v})\| \ &= |ec{w}\cdot(ec{u} imesec{v})| \end{aligned}$$

C-N Math 211 - Massey, 57 / 69

P(1,2,3), Q(5,7,1), R(-1,4,0), S(2,2,8)

- 1. Find unit vector \perp to plane PQR.
 - using dot products
 - using cross product
- 2. Find angle between \vec{PS} and the plane PQR.
- 3. Find area $\triangle PQR$.
- Find volume parallelpiped with corners at P, Q, R, S.

C-N Math 211 - Massey, 58 / 69

Lines in 2D

Consider the line thru P(1,2) and Q(6,4).

 Instead of pt/slope or pt/intercept form, parameterize the line.

$$\vec{\ell}(t) = \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 5\\2 \end{bmatrix} t.$$

$$x(t) = 1 + 5t$$

$$y(t) = 2 + 2t$$

- at P when t = 0; at Q when t = 1
- $t \in \mathbb{R}$ describes infinite linear path $t \in [0, 1]$ describes line segment

Lines and Planes

Equation of a Line

Given:

 ▶ point on the line (written as vector) p
 ▶ direction vector of the line v
 The equation of the line is:

$$ec{\ell}(t) = ec{p} + ec{v}t$$

Each value of the parameter t identifies a point on the line.

CAUSE YOU'RE THE ONLY TEN I SEE

C-N Math 211 - Massey, 60 / 69

Equation of a Plane

Given:

- ▶ point on the plane \vec{r}_0
- ▶ normal vector \vec{n}

If \vec{r} is a point on the plane, then $\vec{n} \cdot (\vec{r} - \vec{r}_0) = 0$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

could collect constants on RHS
 n given by coefficients of x, y, z

C-N Math 211 - Massey, 61 / 69

Examples

- 1. line thru two points
- 2. plane determined by three points
- 3. line \perp to plane
- 4. line thru point, parallel to another line
- 5. plane thru point, parallel to another plane
- 6. plane thru point, \perp to a line
- 7. Sketch intercepts and find normal vector of z = 84 7x 4y.

Intersections

	line	plane	sphere
line			
plane			
sphere			

C-N Math 211 - Massey, 63 / 69

Two Lines

Two lines are either:

 parallel (directions are scalar multiples)
 intersecting (pass through same point)
 skew (neither parallel nor intersect)
 If you randomly pick two lines, they are mostlikely skew.

Intersecting Lines

$$ec{t}_1(t_1) = egin{bmatrix} 3t_1 - 7 \ t_1 + 1 \ 2t_1 + 5 \end{bmatrix}, ec{t}_2(t_2) = egin{bmatrix} 2t_2 + 9 \ 5t_2 + 15 \ -t_2 + 11 \end{bmatrix}$$

Set $\vec{l}_1(t_1) = \vec{l}_2(t_2)$ to find intersection (5, 5, 13).

- when and where
 - paths cross, but no collison in time !
- ▶ Find the angle of intersection.
- Find eqn of the plane containing these lines.

C-N Math 211 - Massey, 65 / 69

Lines and Planes

Skew Lines

$$\vec{l}_1(t_1) = \begin{bmatrix} t_1 \\ 1+t_1 \\ 2 \end{bmatrix}, \vec{l}_2(t_2) = \begin{bmatrix} t_2-1 \\ 2t_2 \\ 1+t_2 \end{bmatrix}$$
Not parallel since directions
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \neq c \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$
Do not intersect since this system of three eqns in two unknowns is inconsistent (no solution).

C-N Math 211 - Massey, 66 / 69

Intersection of Line and Plane

- line $\vec{l}(t) = 3(t-2)\vec{i} + (2-5t)\vec{j} + 8t\vec{k}$ plane z = 84 7x 4y
- 1. Find the point of interesction.
- 2. Find the acute angle of intersection: let θ be angle between line and normal vector, then find $|90^{\circ} \theta|$.
- Write two lines through the origin that lie parallel to the plane, and make an angle of 30° with each other.

C-N Math 211 - Massey, 67 / 69

Intersection of Planes

- x y + 2z = 0 and 2x + y z = 1
 - 1. line of intersection
 - could solve system of 2 eqns, 3 unknowns
 - point: set z = 0 and solve for x, y direction:
 - ▶ find another point
 - ▶ \perp to [1;-1;2] and [2;1;-1]
 - 2. angle between the planes = angle between their normal vectors

Shortest Distance

Draw pictures to illustrate.

1. point Q to plane:

• if P in plane, find $\|\text{proj}_{\vec{n}} \vec{PQ}\| = \frac{|\vec{PQ} \cdot \vec{n}|}{\|\vec{n}\|}$

2. point Q to line:

use a projection $\vec{\ell}(t) = \vec{p} + \vec{v}t$, set $\vec{v} \cdot (\vec{\ell}(t) - \vec{q}) = 0$

3. between two skew lines

• set $(\vec{p}_1 + \vec{v}_1 t_1) - (\vec{p}_2 + \vec{v}_2 t_1) \perp \vec{v_1}, \vec{v_2}$

• find component of $ec{p}_1 - ec{p}_2$ along $ec{v}_1 imes ec{v}_2$

C-N Math 211 - Massey, 69 / 69