
Functions

Functions

Input independent variable(s),
output dependent variable(s).
I y = f (x ) = x 2

1 input, 1 output (static curve in R2)
I x = cos(t), y = sin(t)

1 input, 2 outputs (dynamic curve in R2)
I z = f (x , y) = x 2 + y2

2 inputs, 1 output (surface in R3)
I F (x , y) = [x ; x + y ]

2 inputs, 2 outputs (vector field in R2)
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Functions

Vector-Valued Function

Consider the line: ~r(t) =

1+ 2t
5t

8− 3t

, t ∈ R

I vector-valued function 1 input, 3 outputs
I parameter t
I output is the “position” at the given “time”
I make a table
I describes a dynamic path
I parametric equations for each coordinate
I what if restrict domain to t ∈ [0, 2] ?
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Functions

Swinging Arm Multi-variable Intro
I area table vs formula A(a , b) = 1

3b
3/2a−1/2

I a and b are independent
variables/parameters (dials)

I A depends on a and b
I domain b ≤ 36a
I range A ≥ 0
I partial derivatives ∂A

∂a and ∂A
∂b

are ratios of change in A
to changes in a or b respectively

I A(2.03, 27.86) ≈ A(2, 28) + ∂A
∂a∆a + ∂A

∂b∆b
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Functions

Distance to Hospital

I city boundary [0, 10]× [−3, 5]
I hospital at H (2, 0)
I D(x , y) =

√
(x − 2)2 + y2

I find the range
I visualize as a surface: a cone
I “squared distance”: a paraboloid
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Functions

Multi-Variable Function

Consider the plane:
z (x , y) = 5+ 2x + 7(y − 3), (x , y) ∈ R2

I multi-variable function 2 inputs, 1 output
I given x , y location, gives the “elevation”
I make a table
I describes a surface
I sketch region where x , y , z are all ≥ 0
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Functions

Domain/Range

I independent variable(s): inputs
I dependent variable(s): outputs
I domain: set of possible inputs
I range: set of possible outputs
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Functions

Non-flat Examples

1. An object follows a sine curve from (0, 0)
when t = 0 to (2, 1) when t = 5.
Make a table. Find parametric equations
for x and y .

2. Sketch surface z = f (x , y) = 36− 4x 2 − y2,
such that z ≥ 0.
What do the cross-sections look like ?
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Functions

Visualizing

I vector-valued function
I trajectory of an object moving in space
I separate parametric equations (x (t), y(t), z (t))

can be plotted with respect to t
I multi-variable function

I surface plot
I contours
I heat map

Also, a table of values may be more insightful
than a formula, which might not be available.

C-N Math 211 - Massey, 77 / 162



Functions

Contours

A contour, (level or iso curve) is the solution set
of f (x , y) = c, for a constant c.

I weather iso-bars (barometric pressure), or
iso-therms

I topographical maps
I walk along contour - elevation constant
I contours corresponding to distinct levels

cannot cross
I contrast contours of a cone and a paraboloid
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Functions

More Examples

1. ~r(t) = [cos(t); sin(t); t ], t ∈ [0,∞)

2. Predator-prey (e.g. wolf-rabbit) state space
path; somewhat cyclical, but chaotic.

3. P(r ,m) = 1000r/12
1−(1+r/12)−m

(monthly car payment if borrow 1000
dollars at annual rate r for m months)
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Multivariable Functions

Surfaces

I The graph of an equation is the set of
points that satisfy it.

I in R2, graph the “curves”
y = 1, y = x , y = x 2, x 2 + y2 = 1

I in R3, graph the surfaces:
I z = 1
I 3x + 4y + z = 24
I z = x 2 + y2

I z =
√

x 2 + y2

I x 2 + y2 + z 2 = 1
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Multivariable Functions

Multivariable Function Examples

1. V (r , h) = πr 2h (volume of cylinder)
2. d(h , r) =

√
h2 + 2rh (distance to horizon

from height h on sphere radius r)
3. F = Gm1m2

r2 (gravitational force)

4. z = 7xye−(x 2+y2) (two hills and two valleys)
5. f (x , y) = x 2 − y2 (saddle point)
6. z = 1− |x + y |− |x − y | (pyramid)
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Multivariable Functions

Examples

Find domain, range, and contours.
Visualize surface with software.
1. z (x , y) =

√
36− 4x 2 − 9y2.

2. z =
√

x 2 + y2

3. z = ln(xy)
4. z = x 2 − y2

5. f (x , y) = e−x 2y

6. f (x , y) = 3x−y
x 2+2y2+1
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Multivariable Functions

Economics
“indifference curves” represent constant utility
(benefit,enjoyment) if trade-offs can be made
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Multivariable Functions

Limits

Definition 1
If |f (x , y) − L| can be made arbitrarily small by
chosing (x , y) “close” enough to (a , b), then:

lim
x ,y→a ,b

f (x , y) = L
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Multivariable Functions

Continuity

Definition 2
f is continuous at (a , b) if
lim

x ,y→a ,b
f (x , y) = f (a , b)

Polynomials, rational, trig, logs,
exponential functions are continuous
on their domains.
So just plug in to find the limit.

For example, z = ln(x + y2) is
continuous on the domain x > −y2.
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Multivariable Functions

Approach

For the limit to exist, the answer must be the
same no matter how you approach.
I In functions of one variable, can approach

from left or right.
I If multi-variable, then can approach from

infinitely many directions and paths.
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Multivariable Functions

Approach

Use polar coordinates to investigate these limits.

1. lim
x ,y→0,0

x 3

x 2 + y2 = lim
r→0

r cos3(θ) = 0

2. lim
x ,y→0,0

xy
x 2 + y2

3. lim
x ,y→0,0

xy2

x 2 + y4
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Multivariable Functions

GOF

g(x , y) =
1

1+ e−u u =
x − y

2
√

x + y

x y u g
10 0 1.58 .83
50 40 .53 .63
31 30 .06 .52
42 3 2.91 .95
49 3 3.19 .96
81 0 4.50 .99
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Multivariable Functions

Rate of Change
Temperature function grid:

4 46 47 44 46 50
3 33 34 36 37 41
2 26 27 29 30 31
1 23 22 24 25 27
0 22 21 20 21 24

y
x 0 1 2 3 4

I slope in W-E direction fx (2, 2) ≈ 30−27
3−1 = 1.5

I slope in S-N direction fy(2, 2) ≈ 36−24
3−1 = 6

I slope in NE direction? (rise over run)
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Multivariable Functions

Definition 3
Given z = f (x , y), let h = ∆x .
The (finite) difference quotient w.r.t. x
I centered

∆z
∆x

=
f (x + 1

2h , y) − f (x − 1
2h , y)

h
I forward

∆z
∆x

=
f (x + h , y) − f (x , y)

h
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Multivariable Functions

Definition 4
If the limit exists, the partial derivative
of f w.r.t. x is denoted

fx =
∂f
∂x

=
∂

∂x
f = Dx f = lim

h→0

f (x + h , y) − f (x , y)
h

I all but one indep variable held constant
I slope of surface as you move parallel to axis
I instantaneous rate of change ∆z

∆x ≈
∂z
∂x

I given contour plot, which bigger |fx | or |fy | ?
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Multivariable Functions

Calculating Partial Derivatives

1. d
dx (x

2 + 1)4

2. d
dx (x

2 + 2)4

3. d
dx (x

2 + 3)4

4. d
dx (x

2 − 1)4

5. ∂
∂x (x

2 + y)4

6. ∂
∂x (x

2 + cos(y))4

I Differentiate w.r.t. one variable;
treat all others as constants.

I Use derivative rules
(power, product, chain, etc).
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Multivariable Functions

Examples

1. z = f (x , y) =
√
3x 2 + ey ; at the pt (1, 0, 2)

I Estimate ∂z
∂x ≈

∆z
∆x using nearby points and the

difference quotient.
I Estimate ∂z

∂y (1, 0) =
∂z
∂y

∣∣∣
(1,0)

I Use derivative rules to find the partial
derivative functions.

2. Find partial derivatives of
z = 3x 2y + y

x + y4.
3. ∂

∂y

[
y2(ex + x 2y)3

]
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Multivariable Functions

Tangent Plane

Suppose f (5, 8) = 40 and ∇f (5, 8) = [7, 3].
I point (5, 8, 40)

I normal vector

10
fx

×
01
fy

 =

−7
−3
1


The tangent plane or “linearization” is

−7(x − 5) − 3(y − 8) + 1(z − 40) = 0
or rearranging:

z = 40+ 7(x − 5) + 3(y − 8)
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Multivariable Functions

Tangent Plane

I f (x ) = x 2, f ′(x ) = 2x ,
at (3, 9) slope 6,
tangent line y = 9+ 6(x − 3)

I Follow the same pattern for functions with
more than one independent variable.

I f (x , y) = x 2y3, ∇f (x , y) = [2xy3, 3x 2y2]
at (3, 1, 9), slopes ∇f (3, 1) = [6, 27],
tangent plane z = 9+ 6(x − 3) + 27(y − 1)

I Zoom in enough, and the tangent plane is
indistinguishable from the graph’s surface.
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Multivariable Functions

Differentials
I Intuitively, f (x , y) is differentiable at a pt.

if, as you zoom in, the surface becomes flat
and coincides with the tangent plane.

I Theorem: if f (x , y) is 1st order smooth,
then it is differentiable.

I increment: actual change
∆z = f (x + ∆x , y + ∆y) − f (x , y)

I differential: approximate change
using tangent plane as proxy

dx = ∆x , dy = ∆y
dz = ∂z

∂x dx + ∂z
∂ydy
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Multivariable Functions

Linearization

The linearization of f at (x0, y0) is equal to the
starting function value plus the differential.

`(x , y) = f (x0, y0) + fx (x0, y0)(x − x0)
+ fy(x0, y0)(y − y0)

= f (x0, y0) +∇f (x0, y0) ·
[
∆x
∆y

]
= f (x0, y0) + dz
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Multivariable Functions

Example
Consider f (x , y) = x 2y at (3, 2).
I Contour at (3, 2) also passes thru (x , 50).
I f (3, 2) = 18 and ∇f (3, 2) = [12, 9]
I linearization (tangent plane)

z = 18+ 12(x − 3) + 9(y − 2)
I differential

dz = 12dx + 9dy
I Small move to (3.04, 1.97)

I dz = 12(.04) + 9(−.03) = .21
I ∆z = f (3.04, 1.97) − f (3, 2) = .20595
I f (3.04, 1.97) ≈ `(3.04, 1.97) = 18.21
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Multivariable Functions

Preserved Information
Suppose the plane z = 7− 3(x + 4) + 5(y − 2) is
tangent to f (x , y).

1. Point of tangency (−4, 2, 7).
2. Normal vector ~n = [−3; 5; −1]

3. Gradient ∇f (−4, 2) =
[
−3
5

]
.

4. Normal line `(t) =

−4
2
7

+

−3
5
−1

 t

5. Estimate f (−4.13, 2.04)
≈ 7− 3(−.13) + 5(.04) = 7.59
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Multivariable Functions

Normal Line

Consider the paraboloid f (x , y) = 1+ x 2 + 4y2.
1. point on surface P(3, 1, z )
2. find gradient
3. find the linearization of f
4. find line thru P normal to surface
5. where would it puncture the surface again?

at what angle ?
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Multivariable Functions

Directional Derivative

Given gradient:
slope if you walk E,W,N,S,NE ?

If z differentiable, use tangent plane to find

slope in direction of ~v =

[
dx
dy

]
.

D~vz =
rise
run

=
dz
‖~v‖

=
∇z · ~v
‖~v‖
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Multivariable Functions

Derivatives of Derivatives

f (x , y) = 7x 3y +
5
y

I gradient vector

∇f =

[
∂f
∂x
∂f
∂y

]
=

[
fx
fy

]
=

[
21x 2y

7x 3 − 5y−2

]

I Hessian matrix H =

 ∂
∂x

(
∂f
∂x

)
∂
∂x

(
∂f
∂y

)
∂
∂y

(
∂f
∂x

)
∂
∂y

(
∂f
∂y

)
=

[
∂2f
∂x 2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
fxx fyx
fxy fyy

]
=

[
42xy 21x 2

21x 2 10y−3

]
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Multivariable Functions

Smooth

Definition 5
f is kth order smooth if f and all partial
derivatives up to order k exist and are
continuous.
We may say f is in the class of C k functions.

No corners, edges, holes, cusps, jumps,
singularities, etc.
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Multivariable Functions

Higher Order Derivatives

1. fxx and fyy are concavity E/W and N/S
2. Clairaut’s Theorem

(equality of mixed partials): fxy = fyx
if f is 2nd order “smooth”

3. fxyx = (fyx )x = (fxy)x = fxxy , etc.
4. z = f (x , y) = 3x 2y + x (x − y)7

find ∇z |(2,1) and Hf (2, 1); evaluated at (2, 1)
5. Compute all first and second order partials

f (x , y , z ) = x 2yz − 2zx + y4z 2.
6. PV = cT ; find all second derivatives of P
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Multivariable Functions

Partial Differential Equations

1. A function is called “harmonic” if it satisfies
the Laplace equation uxx + uyy = 0.
Show that u = ex sin y is harmonic.

2. Show that u = e−x sin(t − x ) satisfies the
heat equation ut = kuxx .
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Multivariable Functions

Example

Consider the surface of f (x , y) = 16− x 2 − y2.
1. Find slope in direction ~v = [2; 5].

D~v f =
[−2x ,−2y ] · [2; 5]√

29
=

−4x − 10y√
29

2. Evaluate at (1, 3) to get D~v f (1, 3) = −34√
29
.

3. Find concavity.

D~v

(
−4x − 10y√

29

)
=

[
−4√
29
,
−10√
29

]
· [2; 5]√

29
= −2
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Multivariable Functions

Steepest Ascent

D~v f = ‖∇f ‖‖~v‖ cos θ
‖~v‖ = ‖∇f ‖ cos θ.

I steepest ascent direction θ = 0, so ~v = ∇f
I steepest descent direction −∇f
I The steepest ascent slope is ‖∇f ‖.
I contour direction satisfies ∇f · ~v = 0,

so ∇f is ⊥ to contours
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Multivariable Functions

More Please

Sketch gradients at (1, 1), (1, 4), and (4, 1).
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Multivariable Functions

Example

Suppose you are on a rolling hillside, and notice
that “straight uphill” is 20◦ west of north, and
that the slope in that direction is .18.
1. Find the gradient at your location.
2. Find the slope if you were to walk in the

direction [3; 4].
3. In which directions is the slope zero?
4. Draw a line splitting the plane into halves:

uphill and downhill directions.
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Multivariable Functions

Concavity

Let ∇f = [fx ; fy ] and H =

[
fxx fyx
fxy fyy

]
be evaluated

at a given point. Let ~v = [v1; v2] be velocity.
I slope

D~v f = 1
‖~v‖∇f · ~v = 1

‖~v‖(v1fx + v2fy)
I concavity

D~v(D~v f ) = 1
‖v‖2

[
v1fxx + v2fxy
v1fyx + v2fyy

]
·
[
v1
v2

]
= 1

v ·v (v
2
1 fxx + 2v1v2fxy + v 2

2 fyy) =
vTHv
vTv

Do a numerical example.
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Derivatives

Implicit Functions

When it’s inconvenient to solve for a
“dependent” variable, the graph defines a
function implicitly.
Sometimes expressed as solution set of
F (x , y , z ) = constant.
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Derivatives

Implicit Differentiation

Suppose z is an implicit function of x and y .
Then to find ∂z

∂x , treat y as constant, but z as a
function of x . Differentiate both sides w.r.t. x ,
and solve for ∂z

∂x .
1. x 2 + y2 + z 2 = 121

find ∂z
∂x and ∂z

∂y at (2, 6, 9).

2. If z 3x = ln(xyz ), then find zx and zy .
3. find ∂z

∂x if x (y2z + e−z 2
) = 1
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Derivatives

Gradient Field
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Derivatives

Continuity

f (x , y) =

{
1 xy = 0
0 otherwise

1. Find ∇f .
2. Find lim

x ,y→0,0
f (x , y)
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Derivatives

Black-Scholes

Call option price C (s , t). Today s = 540.
I C = 14.82
I ∂C

∂s = 0.683 (delta)
I ∂C

∂t = −0.591 (theta)
Estimate C tomorrow if s increases to 543.
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Chain Rule

Intermediate Variables

Let z = f (x , y) = x 2y , with x = t3 and y = t4.
1. Substitute and find dz

dt .
2. Find ∇z , x ′(t), and y ′(t).
3. Check that dz

dt = ∂z
∂x

dx
dt +

∂z
∂y

dy
dt

There is one term for each intermediate variable.
The derivative dz

dt is the rate of change in z with
respect to t , as x and y move parametrically.
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Chain Rule

Chain Rule

Theorem 6
Suppose y is a function of ~u, and ~u is a
function of ~x . Then

dy
d~x

=
dy
d~u

d~u
d~x

C-N Math 211 - Massey, 117 / 162



Chain Rule

Chain Rule Pattern

A derivative is the rate of change of one variable
with respect to another.
I Sketch input → output layer network.
I Multiply derivatives that link the input to

the output.
I Add terms, each one corresponding to a

possible path of dependency.
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Chain Rule

Numerical Example

Given dz
d~u = [5, 2, 4] and d~u

d~x =

 3 −2
6 7
−1 8


1. dz

dx1
= (5)(3) + (2)(6) + (4)(−1) = 23
Note this is a dot product.

2. All else equal, what happens to z if you
turn the x1 knob by .03 ?
∆z ≈ dz = dz

dx1
∆x1 + dz

dx2
∆x2
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Chain Rule

Formula Example

z = (u + 2v)3, u = x 2y , v = exy

dz
d~x

= [3(u + 2v)2, 6(u + 2v)2]
[
2xy x 2

exy ex

]
Expanded out,
∂z
∂x

=
∂z
∂u
∂u
∂x

+
∂z
∂v
∂v
∂x

= 6y(u + 2v)2(x + ex )

∂z
∂y

=
∂z
∂u
∂u
∂y

+
∂z
∂v
∂v
∂y

= 3(u + 2v)2(x 2 + 2ex )
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Chain Rule

Cash Flow

I Pops gives 5%, 7%, 10% of his income to
Dad, Uncle, Aunt respectively.

I Dad gives 15% to you.
I Uncle gives 4% to you.
I Aunt gives 6% to you.

If Pops wins $1000, how much will you (Y ) get?
Note the proportionality: dY = dY

dP dP
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Chain Rule

Voltage

V = IR (voltage, current, resistance).
Find dI

dt when
I R = 600 ohms, I = .04 amps
I dR

dt = .5 (heating up)
I dV

dt = −.01 (battery draining)
dV
dt = ∂V

∂I
dI
dt +

∂V
∂R

dR
dt
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Chain Rule

BMI

A person that weighs w kg
and is h cm tall
has a body mass index of

B = w(h/100)−2

A boy currently 140 cm tall weighs 33 kg. He is
growing at 0.6 cm/month and 0.4 kg/month.
Find the rate of change in his BMI.
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Chain Rule

From Polar

Let f (x , y) = y
x 2+1 . Using the polar change of

variables, find ∂f
∂r and ∂f

∂θ
.

I ∂f
∂r = ∂f

∂x
∂x
∂r + ∂f

∂y
∂y
∂r = −2xy cos θ

(x 2+1)2 + sin θ
x 2+1

I ∂f
∂θ

= ∂f
∂x
∂x
∂θ

+ ∂f
∂y
∂y
∂θ

= 2xyr sin θ
(x 2+1)2 + r cos θ

x 2+1
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Optimization

Temperature

Suppose temperature is given by

T (x , y) = exp
(
12xy − x 2 − y4

50

)
degrees K. Find the extreme temperature(s).
I At an extreme, no improvement in any

direction.
I

argmax x , yT (x , y) = argmax x , y(12xy − x 2 − y4)
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Optimization

Extrema
Let f : D → R, where D ⊆ Rn .

Definition 7
f (~x0) is a local maximum if ∃ε > 0 such that
f (~x ) ≤ f (~x0) whenever ‖~x − ~x0‖ < ε

f (~x0) is a global (absolute) maximum if
f (~x ) ≤ f (~x0) for all ~x ∈ D

I local/global minimum defined similarly
I maximums and minimums are

collectively called extrema
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Optimization

Searching for Extrema

Definition 8
The point ~x0 is a critical point if ∇f (~x0) = ~0, or
if the gradient is not defined.

Theorem 9 (Fermat’s Theorem)
Extrema can exist only at critical points or
on the boundry of the domain D.
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Optimization

Saddle Points
Definition 10
A saddle point is a critical pt having both higher
and lower function values arbitrarily close by.

Contours look like concentric ellipses at
extrema, and hyperbolas at saddles.
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Optimization

2nd Derivative Test

Theorem 11 (2nd Derivative Test)
Suppose ∇f (a , b) = ~0, and f is locally smooth

enough. Let D =

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ = fxx fyy − f 2
xy

I D > 0, fxx > 0 implies f (a , b) is local min.
I D > 0, fxx < 0 implies f (a , b) is local max.
I D < 0 implies f (a , b) is a saddle.
I If D = 0, the test is inconclusive.
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Optimization

Local Concavity

Justify the 2nd deriv. test:
I slope D~v f ∝ fxv1 + fyv2

(equals 0 for all ~v iff ∇f = ~0)
I concavity D~v(D~v f ) ∝ (fxxv1 + fyxv2)v1 +

(fxyv1 + fyyv2)v2 = fxxv 2
1 + 2fxyv1v2 + fyyv 2

2
I v2 = 0: then concavity ∝ fxx
I v2 6= 0: WLOG scale ~v so that v2 = 1, then

concavity ∝ fxxv 2
1 + 2fxyv1 + fyy

I by QF, stays same sign as long as
fxx fyy − f 2

xy > 0
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Optimization

Examples

Use the gradient and Hessian to find and classify
all critical points of the objective function.
1. z = 4+ x 3 + y3 − 3xy
2. z = x 3

3 + 4y3

3 − x 2 − 3x − 4y − 3
(visualize in Maxima)

3. mvopt-apps.pdf #5
4. Find shortest distance from point to plane.
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Optimization

Best Fit Line

Find the line y = a + bx that has
least squares error in fitting the points:

{(0, 15), (3, 24), (5, 32), (9, 50)}

The objective function is f (a , b) = (a − 15)2 +
(a + 3b − 25)2 + (a + 5b − 33)2 + (a + 9b − 48)2.

General formula for a and b given {(xi , yi)
n
i=1} ?
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Optimization

Not In Kansas Anymore

Find and classify the critical points of

f (x , y) = (x 2 − 1)2 + (x 2 − ey)2

Notice anything weird?
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Optimization

Global/Absolute Extrema

I The extreme value theorem guarantees that
a continuous function attains its minimum
and maximum on a closed and bounded
domain.

I Candiate locations for global extrema are
critical points and boundary points.

I On the boundary, substitute and find 1
variable critical pts; check corners.

I Evaluate the objective function at each
candidate and select the highest and lowest.
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Optimization

Examples

1. A flat circular plate covers x 2 + y2 ≤ 1. The
temperature at a given point on the plate is
T (x , y) = x 2 + 3y2 − x . Find the hottest
and coldest points on the plate.

2. Let f (x , y) = 2x 2 − 4x + y2 − 4y + 1 be
defined on the triangle bounded by x = 0,
y = 3, and y = x . List all points where an
absolute extremum may occur, and evaluate
f at each one.
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Optimization

Constrained Optimization

Optimize objective function f (x , y) = x 2 + 2y2

subject to (s.t.) the constraint y = x 2 − 4.
I Draw the contours of f , along with the

constraint path.
I substitution method: plug x 2 = y + 4 into f

and make it a calc I problem in y ∈ [−4,∞)

I note that you are changing elevation as you
cross contours, so at extrema the contours
must be parallel to the path.
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Optimization

Lagrange Optimization

I Constraint is a contour of the surface
g(x , y) = y − x 2 + 4.

I At extrema, the gradient directions of f and
g must coincide.

I Lagrange system of equations:
∇f = λ∇g
g(x , y) = 0

I λ is the Lagrange multiplier
I solve eqns and evaluate objective func. to

find potential extrema (Maxima)
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Optimization

Milkmaid Problem

The problem is described [here].
In particular, suppose
I The maid is at (−1, 0).
I The cow is at (1, 0).
I The objective function is

f (x , y) =
√
(x + 1)2 + y2 +

√
(x − 1)2 + y2,

which has elliptical contours.
I The river’s course is described by

(x 2 + 3y − 6)(y − 2) = 3x .
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Optimization

Example

Find the point on the curve x 2 + xy = 1 closest
to the origin.

min x 2 + y2

s.t. x 2 + xy − 1 = 0

Show that (.841, .348) satisfies the Lagrange
equations.
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Optimization

Example
Find the volume of the largest rectangular box,
having sides parallel to coordinate planes, and
inscribed in the ellipsoid 16x 2 + 4y2 + 9z 2 = 144.

I label one corner (x , y , z ), so the objective
function is V (x , y , z ) = 8xyz

I the constraint is
g(x , y , z ) = 16x 2 + 4y2 + 9z 2 − 144

I Lagrange system of equations:
8yz = λ(32x )
8xz = λ(8y)
8xy = λ(18z )
16x 2 + 4y2 + 9z 2 − 144 = 0
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Optimization

Optimization Summary

The objective function f expresses the quantity
you want maximized or minimized. Identify
independent variables. Note the feasible region,
including potential constraint g = 0.
I Unbounded domain: local extrema occur at

critical pts; classify using 2nd D. test
I Bounded domain: also check boundary and

corners; evaluate f to select global extrema
I Constrained: solve Lagrange equations for

potential extrema
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Optimization

Example

Optimize z = x 3 + y3 + (x − 2)2 + (y − 5)2 on
the region bdb y = 0 and y = 4− x 2.

1. Use Maxima to graph on [−4, 4]× [4, 4].
2. Find and classify interior critical points.
3. Solve the Lagrange eqns in Maxima for

parabolic boundary.
4. Find the absolute extrema.

C-N Math 211 - Massey, 142 / 162


