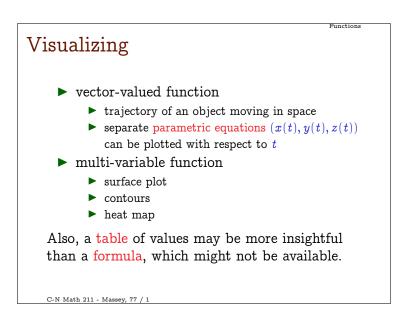


Non-flat Examples

- 1. An object follows a sine curve from (0,0)when t = 0 to (2,1) when t = 5. Make a table. Find parametric equations for x and y.
- 2. Sketch surface $z = f(x, y) = 36 4x^2 y^2$, such that $z \ge 0$. What do the cross-sections look like ?

C-N Math 211 - Massey, 76 / 1



Contours

A contour, (level or iso curve) is the solution set of f(x, y) = c, for a constant c.

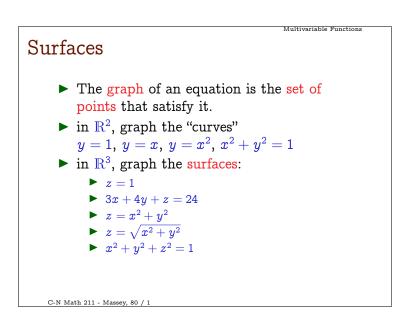
Functions

- weather iso-bars (barometric pressure), or iso-therms
- topographical maps
- walk along contour elevation constant
- contours corresponding to distinct levels cannot cross
- contrast contours of a cone and a paraboloid

More Examples

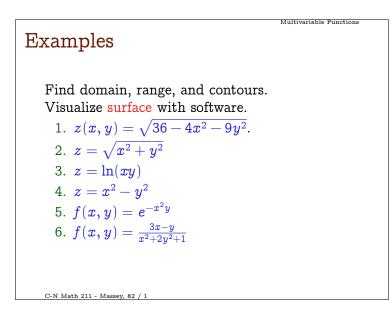
- 1. $ec{r}(t) = [\cos(t); \sin(t); t]$, $t \in [0,\infty)$
- 2. Predator-prey (e.g. wolf-rabbit) state space path; somewhat cyclical, but chaotic.
- 3. $P(r,m) = \frac{1000r/12}{1-(1+r/12)^{-m}}$ (monthly car payment if borrow 1000 dollars at annual rate r for m months)

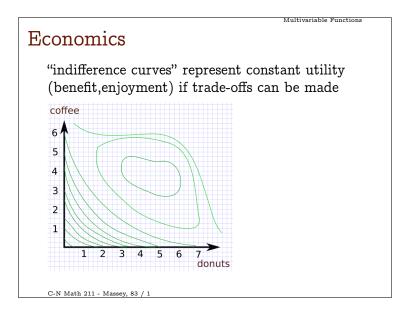
C-N Math 211 - Massey, 79 / 1



Multivariable Function Examples
wantivariable i unction Examples
1. $V(r,h) = \pi r^2 h$ (volume of cylinder)
2. $d(h,r) = \sqrt{h^2 + 2rh}$ (distance to horizon
from height h on sphere radius r)
3. $F = \frac{Gm_1m_2}{r^2}$ (gravitational force)
4. $z = 7xye^{-(x^2+y^2)}$ (two hills and two valleys)
5. $f(x,y) = x^2 - y^2$ (saddle point)
6. $z = 1 - x + y - x - y $ (pyramid)

C-N Math 211 - Massey, 81 / 1





Limits

Definition 1

If |f(x, y) - L| can be made arbitrarily small by chosing (x, y) "close" enough to (a, b), then:

Multivariable Functions

 $\lim_{x,y \to a,b} f(x,y) = L$

Continuity

Definition 2

 $f \text{ is continuous at } (a, b) \text{ if} \\ \lim_{x,y \to a,b} f(x, y) = f(a, b)$

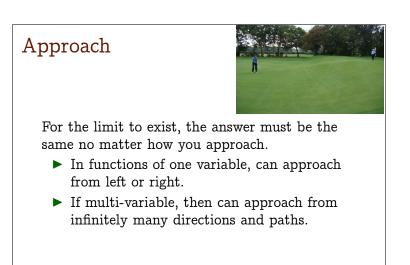
Polynomials, rational, trig, logs, exponential functions are continuous on their domains. So just plug in to find the limit.

Multivariable Functions

Multivariable Function

For example, $z = \ln(x + y^2)$ is continuous on the domain $x > -y^2$.

C-N Math 211 - Massey, 85 / 1



C-N Math 211 - Massey, 86 / 1

Approach

Use polar coordinates to investigate these limits.

1.
$$\lim_{x,y\to 0,0} \frac{x^3}{x^2+y^2} = \lim_{r\to 0} r\cos^3(\theta) = 0$$

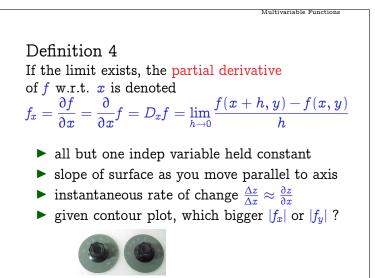
2. $\lim_{x,y\to 0,0} \frac{xy}{x^2+y^2}$
3. $\lim_{x,y\to 0,0} \frac{xy^2}{x^2+y^4}$

GOF					Multivariable Functions
g(x,y)	$=\frac{1}{1}$	$\frac{1}{+ e^{-}}$	$\overline{-u}$	<i>u</i> =	$=rac{x-y}{2\sqrt{x+y}}$
	\boldsymbol{x}	y	u	g	
	10	0	1.58	.83	
	50	40	.53	.63	
	31	30	.06	.52	
	42	3	2.91	.95	
	49	3	3.19	.96	
	81	0	.06 2.91 3.19 4.50	.99	
C-N Math 211 - Mass	ey, 88 / 1				

							Multivariable Functions
Rate of Change							
	Tempe	ratu	re fu	ıncti	on g	rid:	
	4	46	47	44	46	50	
	3	33	34	36	37	41	
	2	26	27	29	30	31	
	1	23	22	24	25	27	
	0	22	21	20	21	24	
	$egin{array}{c} y & & \\ & x & \end{array}$	0	1	2	3	4	
	► slo	ope i	n W	-E d	irect	ion	$f_x(2,2)pprox rac{30-27}{3-1}=1.5$
	► slo	ope i	n S-	N di	recti	on f	$S_y(2,2) \approx \frac{36-24}{3-1} = 6$
							(rise over run)
		-					
	C-N Math 21	.1 - Mass	ey, 89 /	1			

Definition 3 Given z = f(x, y), let $h = \Delta x$. The (finite) difference quotient w.r.t. x• centered $\frac{\Delta z}{\Delta x} = \frac{f(x + \frac{1}{2}h, y) - f(x - \frac{1}{2}h, y)}{h}$ • forward $\frac{\Delta z}{\Delta x} = \frac{f(x + h, y) - f(x, y)}{h}$

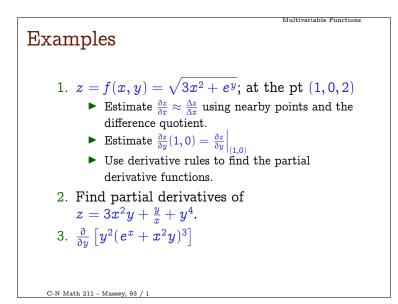
C-N Math 211 - Massey, 90 / 1

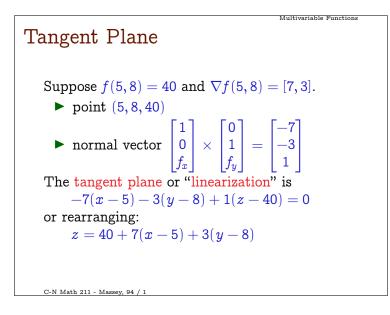


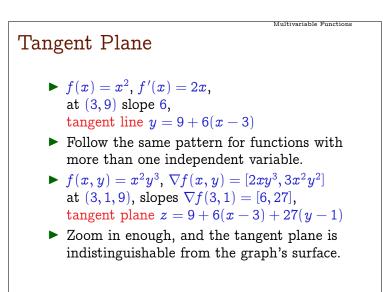
C-N Math 211 - Massey, 91 / 1

C-N Math 211 - Massey, 92 / 1

Calculating Par	Multivariable Functions
1. $\frac{d}{dx}(x^2+1)^4$ 2. $\frac{d}{dx}(x^2+2)^4$ 3. $\frac{d}{dx}(x^2+3)^4$	4. $\frac{d}{dx}(x^2-1)^4$ 5. $\frac{\partial}{\partial x}(x^2+y)^4$ 6. $\frac{\partial}{\partial x}(x^2+\cos(y))^4$
 Differentiate w treat all others Use derivative (power, product) 	rules







C-N Math 211 - Massey, 95 / 1

Differentials

Intuitively, f(x, y) is differentiable at a pt. if, as you zoom in, the surface becomes flat and coincides with the tangent plane.

Multivariable Functions

- Theorem: if f(x, y) is 1st order smooth, then it is differentiable.
- increment: actual change $\Delta z = f(x + \Delta x, y + \Delta y) f(x, y)$
- differential: approximate change using tangent plane as proxy

Linearization

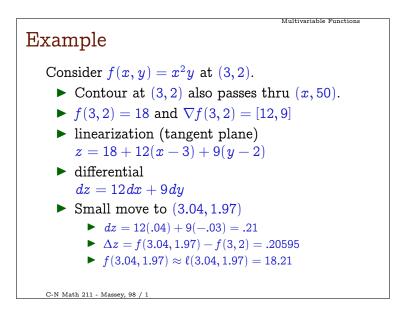
The linearization of f at (x_0, y_0) is equal to the starting function value plus the differential.

Multivariable Function

Multivariable Functions

$$egin{array}{rcl} \ell(x,y) &=& f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) \ &&+ f_y(x_0,y_0)(y-y_0) \ &=& f(x_0,y_0) +
abla f(x_0,y_0) \cdot egin{bmatrix} \Delta x \ \Delta y \end{bmatrix} \ &=& f(x_0,y_0) + dz \end{array}$$

C-N Math 211 - Massey, 97 / 1

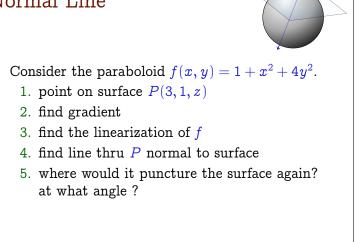


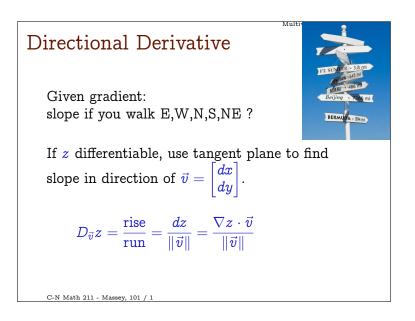
Preserved Information Suppose the plane z = 7 - 3(x + 4) + 5(y - 2) is tangent to f(x, y). 1. Point of tangency (-4, 2, 7). 2. Normal vector $\vec{n} = [-3;5;-1]$ 3. Gradient $\nabla f(-4,2) = \begin{bmatrix} -3\\5\\5 \end{bmatrix}$. 4. Normal line $\ell(t) = \begin{bmatrix} -4\\2\\7 \end{bmatrix} + \begin{bmatrix} -3\\5\\-1 \end{bmatrix} t$ 5. Estimate f(-4.13, 2.04) $\approx 7 - 3(-.13) + 5(.04) = 7.59$

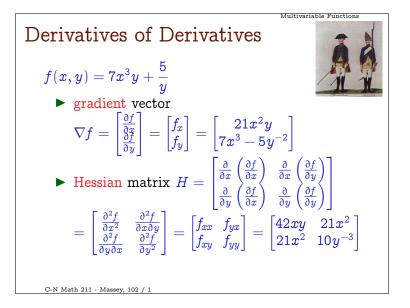
C-N Math 211 - Massey, 99 / 1

Normal Line

C-N Math 211 - Massey, 100 / 1







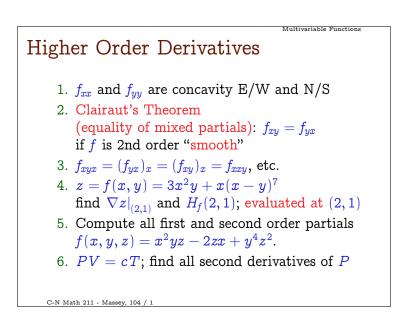
Smooth

Definition 5

f is kth order smooth if f and all partial derivatives up to order k exist and are continuous. We may say f is in the class of C^k functions.

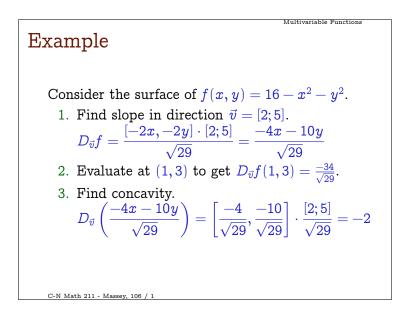
No corners, edges, holes, cusps, jumps, singularities, etc.

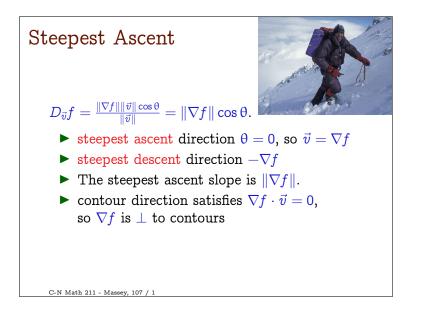
C-N Math 211 - Massey, 103 / 1

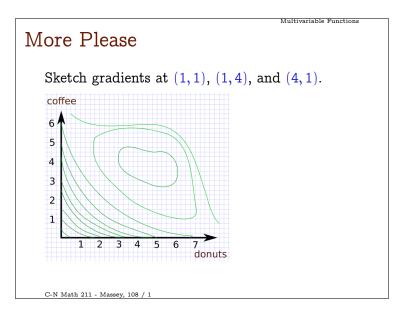


Partial Differential Equations

- 1. A function is called "harmonic" if it satisfies the Laplace equation $u_{xx} + u_{yy} = 0$. Show that $u = e^x \sin y$ is harmonic.
- 2. Show that $u = e^{-x} \sin(t x)$ satisfies the heat equation $u_t = ku_{xx}$.







Example

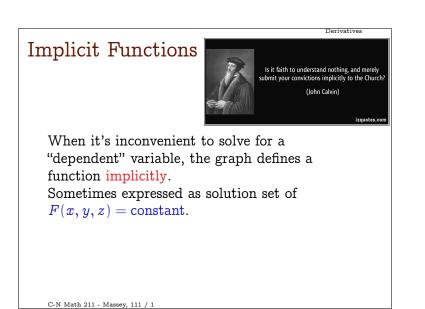
Suppose you are on a rolling hillside, and notice that "straight uphill" is 20° west of north, and that the slope in that direction is .18.

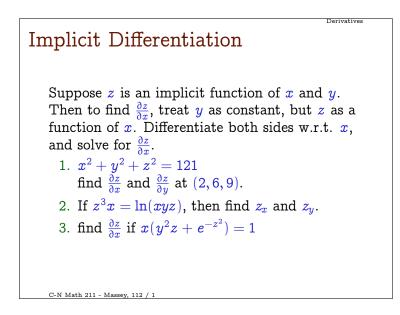
- 1. Find the gradient at your location.
- 2. Find the slope if you were to walk in the direction [3;4].
- 3. In which directions is the slope zero?
- 4. Draw a line splitting the plane into halves: uphill and downhill directions.

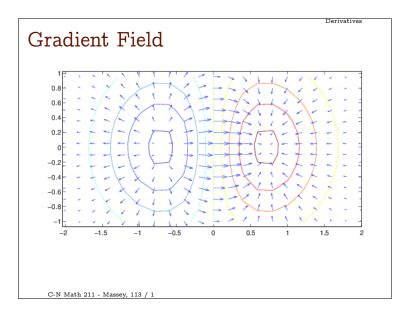
C-N Math 211 - Massey, 109 / 1

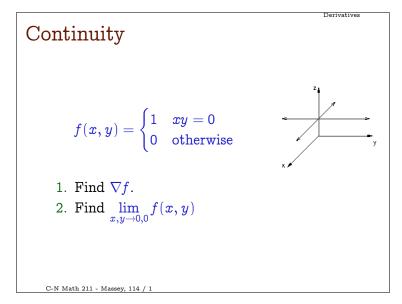
Concavity
Let $\nabla f = [f_x; f_y]$ and $H = \begin{bmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{bmatrix}$ be evaluated
at a given point. Let $\vec{v} = [v_1; v_2]$ be velocity.
► slope
$D_{ec v}f=rac{1}{\ ec v\ } abla f\cdotec v=rac{1}{\ ec v\ }(v_1f_x+v_2f_y)$
► concavity
$D_{ec v}(D_{ec v}f) = rac{1}{\ v\ ^2} egin{bmatrix} v_1 f_{xx} + v_2 f_{xy} \ v_1 f_{yx} + v_2 f_{yy} \end{bmatrix} \cdot egin{bmatrix} v_1 \ v_2 \ v_2 \end{bmatrix}$
$=rac{1}{v\cdot v}(v_{1}^{2}f_{xx}+2v_{1}v_{2}f_{xy}+v_{2}^{2}f_{yy})=rac{v^{T}Hv}{v^{T}v}$
Do a numerical example.

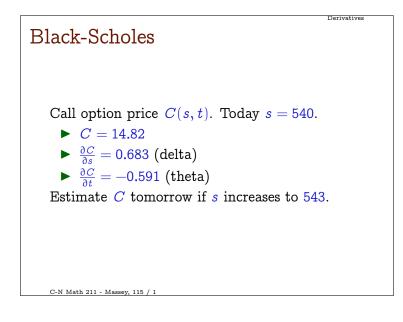
C-N Math 211 - Massey, 110 / 1

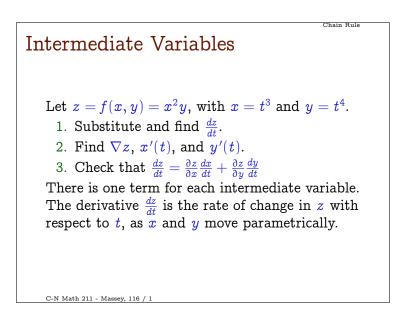












Chain Rule

Theorem 6 Suppose y is a function of \vec{u} , and \vec{u} is a function of \vec{x} . Then

 $rac{dy}{dec x} = rac{dy}{dec u} rac{dec u}{dec x}$

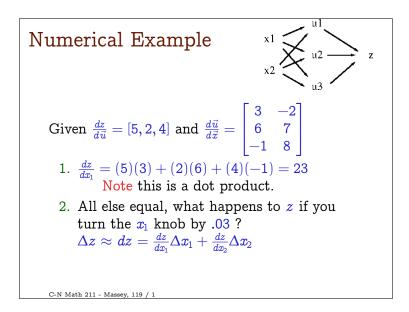
Chain Rule Pattern

A derivative is the rate of change of one variable with respect to another.

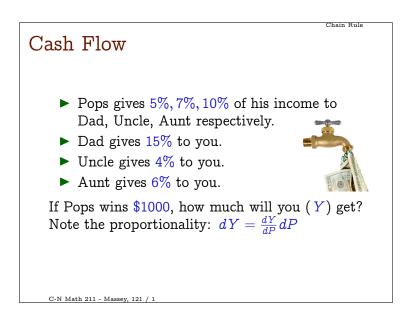
Chain Rule

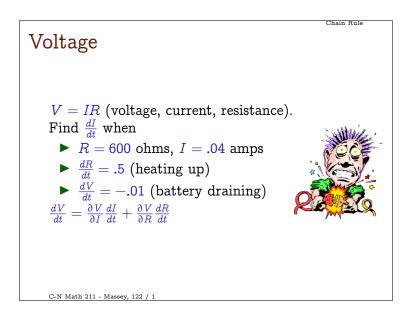
- Sketch input \rightarrow output layer network.
- Multiply derivatives that link the input to the output.
- Add terms, each one corresponding to a possible path of dependency.

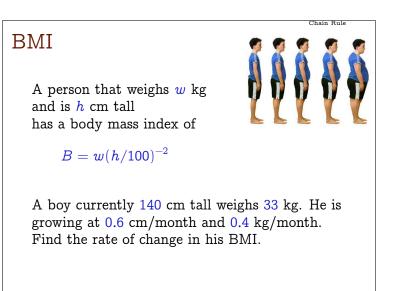
C-N Math 211 - Massey, 118 / 1

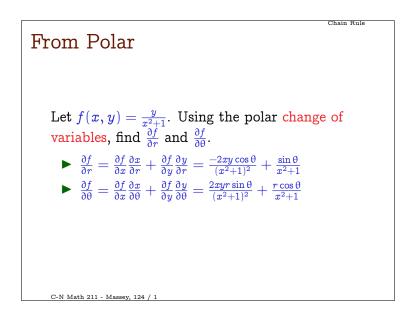


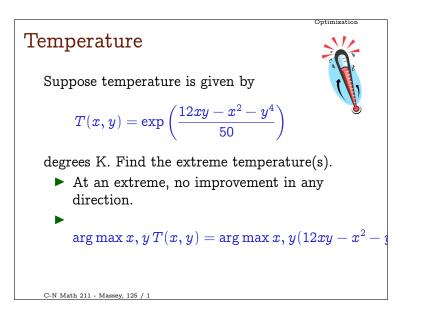
Formula Example
$z=(u+2v)^3,u=x^2y,v=e^xy$
$rac{dz}{dec x} = [3(u+2v)^2, \ 6(u+2v)^2] egin{bmatrix} 2xy & x^2 \ e^xy & e^x \end{bmatrix}$
Expanded out,
$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x} = 6y(u+2v)^2(x+e^x)$
$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = 3(u+2v)^2(x^2+2e^x)$
C-N Math 211 - Massey, 120 / 1











Optimization

Extrema

Let $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^n$.

Definition 7

 $f(\vec{x}_0)$ is a local maximum if $\exists \epsilon > 0$ such that $f(\vec{x}) \leq f(\vec{x}_0)$ whenever $\|\vec{x} - \vec{x}_0\| < \epsilon$

 $f(\vec{x}_0)$ is a global (absolute) maximum if $f(\vec{x}) \leq f(\vec{x}_0)$ for all $\vec{x} \in D$

- local/global minimum defined similarly
- maximums and minimums are collectively called extrema

Searching for Extrema

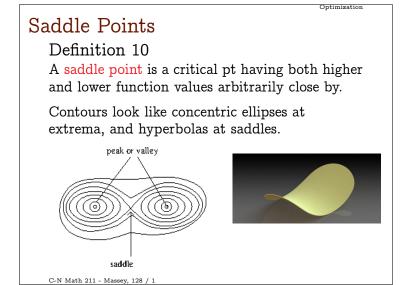
Definition 8

The point \vec{x}_0 is a critical point if $\nabla f(\vec{x}_0) = \vec{0}$, or if the gradient is not defined.

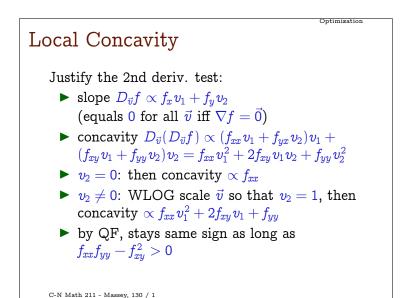
Optimization

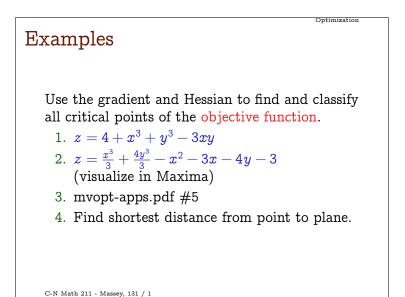
Theorem 9 (Fermat's Theorem) Extrema can exist only at critical points or on the boundry of the domain D.

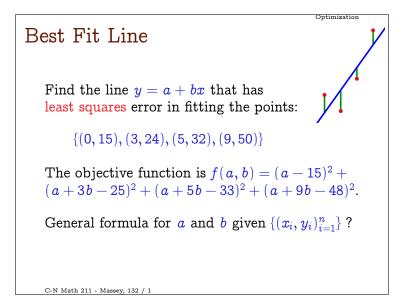
C-N Math 211 - Massey, 127 / 1



2nd Derivative Test
Theorem 11 (2nd Derivative Test)
Suppose $ abla f(a, b) = \vec{0}$, and f is locally smooth
enough. Let $D=egin{bmatrix} f_{xx}&f_{xy}\ f_{yx}&f_{yy} \end{bmatrix}=f_{xx}f_{yy}-f_{xy}^2$
$\blacktriangleright D > 0, f_{xx} > 0 \text{ implies } f(a, b) \text{ is local min.}$
▶ $D > 0$, $f_{xx} < 0$ implies $f(a, b)$ is local max.
$\blacktriangleright D < 0 \text{ implies } f(a, b) \text{ is a saddle.}$
• If $D = 0$, the test is inconclusive.







Not In Kansas Anymore

Optimization

Optimization

Find and classify the critical points of

 $f(x, y) = (x^2 - 1)^2 + (x^2 - e^y)^2$

Notice anything weird?

C-N Math 211 - Massey, 133 / 1

Global/Absolute Extrema

- The extreme value theorem guarantees that a continuous function attains its minimum and maximum on a closed and bounded domain.
- Candiate locations for global extrema are critical points and boundary points.
- On the boundary, substitute and find 1 variable critical pts; check corners.
- Evaluate the objective function at each candidate and select the highest and lowest.

C-N Math 211 - Massey, 134 / 1

Examples

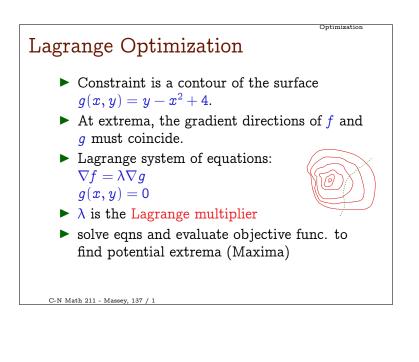
- 1. A flat circular plate covers $x^2 + y^2 \le 1$. The temperature at a given point on the plate is $T(x, y) = x^2 + 3y^2 x$. Find the hottest and coldest points on the plate.
- 2. Let $f(x, y) = 2x^2 4x + y^2 4y + 1$ be defined on the triangle bounded by x = 0, y = 3, and y = x. List all points where an absolute extremum may occur, and evaluate f at each one.

Constrained Optimization

Optimize objective function $f(x, y) = x^2 + 2y^2$ subject to (s.t.) the constraint $y = x^2 - 4$.

- Draw the contours of f, along with the constraint path.
- ► substitution method: plug x² = y + 4 into f and make it a calc I problem in y ∈ [-4,∞)
- note that you are changing elevation as you cross contours, so at extrema the contours must be parallel to the path.

C-N Math 211 - Massey, 136 / 1



Milkmaid Problem

Optimization

The problem is described [here]. In particular, suppose

- The maid is at (-1, 0).
- The cow is at (1, 0).
- ▶ The objective function is $f(x, y) = \sqrt{(x+1)^2 + y^2} + \sqrt{(x-1)^2 + y^2}$, which has elliptical contours.
- ► The river's course is described by $(x^2 + 3y 6)(y 2) = 3x.$

Example

Find the point on the curve $x^2 + xy = 1$ closest to the origin.

Optimization

Optimization

Optimization

```
 \min x^2 + y^2 \\ \text{s.t. } x^2 + xy - 1 = 0
```

Show that (.841, .348) satisfies the Lagrange equations.

C-N Math 211 - Massey, 139 / 1

Example

Find the volume of the largest rectangular box, having sides parallel to coordinate planes, and inscribed in the ellipsoid $16x^2 + 4y^2 + 9z^2 = 144$.

- ▶ label one corner (x, y, z), so the objective function is V(x, y, z) = 8xyz
- ▶ the constraint is g(x, y, z) = 16x² + 4y² + 9z² - 144
 ▶ Lagrange system of equations:
 - $8yz = \lambda(32x)$ $8xz = \lambda(8y)$ $8xy = \lambda(18z)$ 16x² + 4y² + 9z² - 144 = 0

C-N Math 211 - Massey, 140 / 1

Optimization Summary

The objective function f expresses the quantity you want maximized or minimized. Identify independent variables. Note the feasible region, including potential constraint g = 0.

- Unbounded domain: local extrema occur at critical pts; classify using 2nd D. test
- Bounded domain: also check boundary and corners; evaluate f to select global extrema
- Constrained: solve Lagrange equations for potential extrema

Example

Optimize $z = x^3 + y^3 + (x - 2)^2 + (y - 5)^2$ on the region bdb y = 0 and $y = 4 - x^2$.

Optimization

- 1. Use Maxima to graph on $[-4,4] \times [4,4]$.
- 2. Find and classify interior critical points.
- 3. Solve the Lagrange eqns in Maxima for parabolic boundary.
- 4. Find the absolute extrema.

C-N Math 211 - Massey, 142 / 1