Example

Consider the solid under the vaulted ceiling $f(x, y) = 5 + \frac{1}{4}xy^2$, and over the rectangular region $R = [1, 5] \times [-2, 4]$ of the *xy*-plane.

- 1. Sketch.
- 2. Divide the base into a grid of 6 squares.
- 3. Estimate the volume using midpoint heights $V \approx 4[f(2,-1) + f(2,1) + f(2,3) + f(4,-1) + f(4,1) + f(4,3)]$

C-N Math 211 - Massey, 143 / 1

Double Integral over Rectangle
 as ΔA_{ij} → 0, the limit is: ∬∫∫(x, y) dA = ∫_c^d [∫_a^b f(x, y) dx] dy = ∫_a^b [∫_c^d f(x, y) dy] dx inside the iterated integral, hold the outer variable constant to compute cross-sectional area of a slice
if the function is well-behaved (e.g. continuous), Fubini's Theorem says that the order of integration does not matter

Examples

 Compute ∬_R 6x²ydA in both orders; illustrate how constants can be moved.
 Which order of integration is easier? ∬_R xe^{xy}dA
 Evaluate ∫₀³∫₋₁¹√1-x²dxdy
 Evaluate ∫₀^{4π}∫₁⁵(1+sin(x))ydydx

Examples

- 1. Improper integral of $z = \frac{2y}{x^2}$ over $[1, \infty) \times [0, 3]$
- 2. Find volume and avg height of solid bounded by (bdb): |x| = 3, |y - 7| = 5, $z = x^2$ (floor), and z = 50 + xy (ceiling)

ouble Integral

- 3. Set up an integral to find the volume between $f(x, y) = 16 - x^2 - y^2$ and its tangent plane in a unit square region centered around (2, 1). What is the average vertical gap on that region?
- 4. A rectangular city is 5×8 kilometers. Find the avg distance to a particular corner.

C-N Math 211 - Massey, 149 / 1

General Regions

- Sketch R in the xy-plane.
- ► Find intersections.
- Draw the more convenient cross-sections.
- Outside variable marches from low to high values.
- Inside variable goes from lower to upper boundary, which may depend on the outside variable.
- ▶ Setup: start outside, move in.
- Evaluation: start inside, work out

Drone Delivery

Our 5×8 city has annexed a region adjacent to its southern boundary, bounded by y = 0 and y = cx(x-5). The total area of the city is now 90 km^2 .

- 1. Find the perimeter of the city.
- 2. Walmart is located at (0,0). Find the average drone flying distance to all points in the city.

Examples 1. area of a circle: $\int_{0}^{2\pi} \int_{0}^{a} r dr d\theta = \pi a^{2}$ 2. volume of a sphere: $2 \int_{0}^{2\pi} \int_{0}^{a} \sqrt{a^{2} - r^{2}} r dr d\theta = \frac{4}{3}\pi a^{3}$ 3. avg height of hemisphere dome 4. vol. solid bdb $z = 4 - x^{2} - y^{2}$ and z = 0 $\int_{0}^{2\pi} \int_{0}^{2} (4 - r^{2}) r dr d\theta = 8\pi$ 5. integrate $z = e^{x^{2} + y^{2}}$ over first loop of $r = \sin(2\theta)$ 6. average distance to point on boundary of circle of radius 5

C-N Math 211 - Massey, 158 / 1