MATH 211 Test 3, Fall 2019

Directions:

- Do not use any notes, books, the internet, or other sources of information.
- You may use a calculator for arithmetic calculations.
- You have 55 minutes. You must work alone; do not communicate with any other person.
- To receive full credit, you must show all relevant work to completely justify your answer (on separate paper).
- 105 points possible, graded out of 100 points.
- 1. (18 pts) Let $f(x, y) = \frac{8y}{x^2+1}$.
 - (a) Find f_x . **Answer:** $\frac{-16xy}{(x^2+1)^2}$
 - (b) Find f_y . Answer: $\frac{8}{x^2+1}$
 - (c) For what value of b does the contour that passes through (3, b) also pass through (2, 10)? Answer: f(2, 10) = 16, then solve f(3, b) = 16 to get b = 20
- 2. (15 pts) Let $f(x, y) = \sin(x^2 y \pi) + 5x$.
 - (a) Find $\nabla f(x, y)$. **Answer:** $\begin{bmatrix} 2\pi xy \cos(x^2 y\pi) + 5 \\ \pi x^2 \cos(x^2 y\pi) \end{bmatrix}$
 - (b) Find the equation of the normal line to the surface of f at the point where x = 3 and y = 7.

Answer: $\ell(t) = \begin{bmatrix} 3\\7\\15 \end{bmatrix} + \begin{bmatrix} -42\pi + 5\\-9\pi + 5\\-1 \end{bmatrix} t$

- 3. (12 pts) Let $z = f(x, y) = 2^{(x^2+y^2)}$.
 - (a) Find the range of this function. **Answer:** $x^2 + y^2 \ge 0$, so $z \ge 1$ and the range is $[1, \infty)$
 - (b) Find the radius of the contour corresponding to z = 64. **Answer:** $x^2 + y^2 = \log_2(64) = 6$, so the radius is $\sqrt{6}$
- 4. (13 pts) In the physics lab there is a mysterious contraption with two dials labeled x and y, and a voltage display that currently reads V = 380. Out of curiosity you:
 - turn the x dial up 5 clicks, and the voltage increases to 410
 - then, without turning the x dial back, you turn the y dial up 2 clicks and V drops down to 400
 - (a) Estimate ∇V at the dial settings after you turned x, but before you turned y. **Answer:** using difference quotients, $V_x \approx 30/5 = 6$ and $V_y \approx -10/2 = -5$
 - (b) Find dV if dx = -3 and dy = 4. **Answer:** dV = (6)(-3) + (-5)(4) = -38

- 5. (26 pts) Suppose f(23, 52) = 17 and $\nabla f(23, 52) = \begin{bmatrix} 0.82 \\ 0.27 \end{bmatrix}$.
 - (a) Write the equation of the tangent plane at that point. **Answer:** z = 17 + .82(x - 23) + .27(y - 52)
 - (b) Estimate f(23.37, 51.48). **Answer:** 17 + .82(0.37) + .27(-.52) = 17.163
 - (c) Find the slope of the surface in the direction 30° west of north. **Answer:** $.82\cos(2\pi/3) + .27\sin(2\pi/3) = -.176$
 - (d) At the given point, the vector $\vec{v} = \begin{bmatrix} 4 \\ b \end{bmatrix}$ points along a contour. Find the value of *b*. **Answer:** set $\vec{v} \cdot \nabla f = 0$, so 4(.82) + .27b = 0, implies b = -12.15
- 6. (14 pts) You are standing on the surface of a rolling hill, and the differential of your elevation is dz = 0.15dx 0.23dy.
 - (a) Find the slope of the hill in the direction $\vec{v} = \begin{bmatrix} 5\\ -2 \end{bmatrix}$. **Answer:** $\frac{(5)(.15)+(-2)(-.23)}{\sqrt{5^2+2^2}} = .2247$
 - (b) If you plant a flag that points straight up, find the angle it makes with the ground.

Answer: the normal vector is $\begin{bmatrix} .15\\ -.23\\ -1 \end{bmatrix}$; the flag is $\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$, and the angle between those is

 $\cos^{-1}(-1/\sqrt{1.0754}) = 164.65^{\circ}$, so the acute angle with the ground is $|90 - 164.65| = 74.65^{\circ}$ Another method: the steepest slope is $||\nabla f||$, and the vertical flag makes an angle of $90 - \tan^{-1}(||\nabla f||)$.

7. (7 pts) If $\nabla f = \begin{bmatrix} 10 \\ b \end{bmatrix}$, find the value of b > 0 such that the steepest ascent direction has slope 12. **Answer:** $\|\nabla f\| = \sqrt{100 + b^2} = 12$ implies $b = \sqrt{44}$